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BUILDING KM3NeT/ORCA TELESCOPE PHYSICS GOALS OF KM3NeT

Deep-sea neutrino telescopes in the Mediterranean sea
e KM3NeT/ARCA: identify high-energy neutrino sources in the Universe.
e KM3NeT/ORCA: determine the mass hierarchy of neutrinos.
ORCAIIS & ORCA6 o ORCAID e ORCAIS Optimized for 1 TeV - 10 PeV and 1-100 GeV energies, respectively.
115 vertical detection units (DU)
18 digital optical modules (DOM) per DU Neutrino event reconstruction with transformers
Event topology, energy and direction, interaction vertex

KM3NeT/ORCA is an evolving detector! We collect, process and analyze data while we build it.
Transformers [1] as LLMs, help us build neutrino physics language in KM3NeT [2].

WHY TRANSFORMERS?

Easily scalable.
Information is retained between detectors.
No specific fine-tuning of neighboring algorithms of GNNs.
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From big to small...
e Train on simulations for the full KM3NeT/ORCA telescope [3, 4].
e Fine-tune on smaller telescopes: ORCA115  ORCA6, ORCA10, etc.

Light collection from Cherenkov radiation
3D arrays of 3" PMTs ...and vice versa

31 PMTs per DOM e Fine-tune on larger detectors: ORCA6  ORCA10  ORCA15

Finetuning training samples: 100k track (I/EC) and 100k shower ( I/eCC) events. We build a model that learns as the detector grows!

TRANSFORMERS ARE HUNGRY FOR DATA! WHY GETTING BIGGER?

The run-by-run approach simulates MC runs based on the data runs to reduce discrepancies. Even though our current detector has very promising results [5], a better
Nevertheless, there is not always enough data to train large models from scratch. event containment will be a major improvement, it needs to grow!

Small detectors require large amounts of data to describe the neutrino topology: Meanwhile, we use our knowledge from the full telescope...
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Interaction vertex reconstruction at KM3NeT/ORCA6, KM3NeT/ORCA10 and KM3NeT/ORCA115
Evolution of the AUROC (Area Under the ROC curve) value for track/shower projected over the neutrino direction for 1-100 GeV atmospheric neutrinos.
classification as function of the training data size in KM3NeT/ORCAG6.

... as we learn the real detector configurations.

STEP BY STEP: ENHANCING PERFORMANCE WITHIN DETECTOR CONSTRAINTS
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Energy resolution at KM3NeT/ORCA6 and KM3NeT/ORCA10 as a function of Opening angle resolution at KM3NeT/ORCA6 and KM3NeT/ORCA10 as a function of the
the number of active DUs per event for 1-100 GeV atmospheric neutrinos. number of active DUs per event for 1-100 GeV atmospheric neutrinos.
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