Measurements and implications of high energy diffuse γ -ray emission from the Galactic plane

Xiaoyuan Huang

Purple Mountain Observatory, Chinese Academy of Science On behalf of LHAASO collaborations

25/09@RICAP-24

Galactic cosmic rays

After acceleration, cosmic rays propagate in the galactic magnetic field, losing the information about their origin and forming a smooth background of cosmic rays.

Origins of Galactic diffuse y rays

Cosmic rays interact with interstellar medium and radiation fields to generate diffuse gamma-ray

Diffuse γ -ray emissions from space-based observations

10

0.1

 $80^{\circ} \le l \le 280$

 $-8^{\circ} \le b \le 8$ ${}^{8}S^{Z}4^{R}20^{T}150^{C}4^{T}$

 $E_{\gamma}^{2}J_{\gamma}(E_{\gamma})$ [MeV

EGRET mapped an entire sky of gamma rays, and there are excesses above 1 GeV in different parts of regions.

Fermi-LAT's observations show a roughly consistent with anticipations, but in the inner galaxy, there are excesses above 1 GeV.

Fermi-LAT Collaboration, 2012

ŦŦ

 $80^{\circ} <= l <= 80$

 $-8^{\circ} \le b \le 8^{\circ}$ ${}^{S}S^{Z}4^{R}20^{T}150^{C}5$

Diffuse y-ray observations from ground-based facilities

Milagro measured diffuse emissions in the Galactic plane around ~10 TeV, found excesses in the Cygnus region. However, source subtraction of Milagro is very limited.

Diffuse γ -ray observations from ground-based facilities

For the first time large-scale γ -ray emission along the Galactic Plane using imaging atmospheric Cherenkov telescopes has been observed. γ -ray emission from cosmic-ray interactions with the interstellar medium makes up a sizable fraction of the signal, but there is excess flux.

Diffuse γ -ray observations from ground-based facilities

ARGO-YBJ measured diffuse emission from the inner Galaxy region, which is consistent with the extrapolation of Fermi-tuned model prediction Tibet-ASy (2021)

Tibet-ASγ measured diffuse emission above 100 TeV, and found excesses compared with the model prediction. Masking radius is 0.5 degree.

Wide-band diffuse emission measurements

Comparison between prediction based on cosmic-ray properties and wide-band diffuse emission measurements are important for cosmic-ray investigation. However, usually diffuse emission measured by ground-based facilities are for different target regions, and in the outer galaxy region there is no detection yet.

LHAASO detector layout

The large area and hybrid detection technique makes LHAASO a powerful facility for cosmic ray and gamma-ray observations in a wide energy range.

LHAASO-KM2A sky coverage

Gamma/CR discrimination

-			
10	$R_{\rm cut}$ for diffuse	$R_{\rm cut}$ for crab	$\log_{10}(E_{\rm rec}/{\rm TeV})$
- 10	-5.00	-5.11	1.0 - 1.2
.0 10	-3.20	-5.24	1.2 - 1.4
10	-5.96	-5.95	1.4 - 1.6
ىڭ 10	-6.17	-6.08	1.6 - 1.8
val	-2.50	-2.34	1.8 - 2.0
<u>ک</u> 10	-2.69	-2.35	2.0 - 2.2
- ぶ 10	-2.79	-2.36	2.2 - 2.4
10	-2.74	-2.36	2.4 - 2.6
10	-2.75	-2.36	2.6 - 2.8
10	-2.79	-2.36	2.8 - 3.0
-			

- Optimize R cuts from the standard point source analysis to enable a higher Q=S/B^{1/2} factor for diffuse emission analysis
- Efficiencies change from ~90% to ~60% for gamma-ray events with energy above 100 TeV, but the contamination from cosmicray is strongly suppressed at very high energy

Background estimation

- Direct integral method: assuming the collecting efficiency's spatial distribution in the detector coordinates remains stable over a short period.
- Efficiencies do vary slightly with time, and thus a sliding window method is adopted (1_10 is used as benchmark, 1 hr step and +/-5 hr window)

Mask resolved sources

Significance

LHAASO Collaboration. (PRL, 2023)

$$R_{\text{mask}} = n \cdot \sqrt{\sigma_{\text{psf}}^2 + \sigma_{\text{ext}}^2},$$

- Source catalogs: KM2A catalog + TeVCat
- For overlapping sources, KM2A parameters are used
- PSF of the lowest energy bin is used
 n=2.5 is chosen

-			(0 00000)		× .	
t <u>o the DGE.</u>						
$\log_{10}\left(\frac{E_{rec}}{E_{rec}}\right)$	Inn	er Galaxy regi	on	Ou	ter Galaxy re	ion
$\overline{\mathrm{TeV}}$	n = 2.0	n = 2.5	n = 3.0	n = 2.0	n = 2.5	n = 3.0
1.0-1.2	11.37 ± 1.09	5.97 ± 0.67	3.56 ± 0.51	9.55 ± 3.03	4.58 ± 1.63	2.65 ± 1.22
1.2-1.4	8.77 ± 0.71	4.26 ± 0.43	2.42 ± 0.31	5.45 ± 1.00	2.25 ± 0.44	0.98 ± 0.20
1.4-1.6	8.14 ± 0.73	2.97 ± 0.36	1.37 ± 0.22	4.32 ± 0.66	1.39 ± 0.23	0.49 ± 0.09
1.6-1.8	6.66 ± 0.56	1.95 ± 0.21	0.76 ± 0.11	6.07 ± 1.30	1.88 ± 0.45	0.58 ± 0.15
1.8-2.0	6.56 ± 0.70	1.97 ± 0.27	0.87 ± 0.16	2.44 ± 0.45	0.77 ± 0.16	0.22 ± 0.05
>2.0	3.26 ± 0.23	0.76 ± 0.06	0.20 ± 0.02	1.47 ± 0.34	0.39 ± 0.09	0.10 ± 0.03

Table 5: Proportion (%) of contamination (f_{cont}) of residual sources (LHAASOCat+TeVCat) to the DCE

LHAASO first catalog (2024, ApJS)

Diffuse emissions with significant detection

- No significant point source left on the significance map
- From 1-dimentional significance distributions, positive residuals in our ROIs, but standard Gaussian distributions for reference regions

LHAASO-KM2A diffuse results

LHAASO Collaboration. (PRL, 2023)

➢ First detection of VHE diffuse emission from outer Galactic plane

> Spectra follow power-law forms with an index of ~ 3

Longitude and latitude profiles

Roughly consistent with gas distributions for *b*, but show significant deviation for *l* The gas distribution may not well trace the diffuse γ -ray emission at very high energies

Confront LHAASO-KM2A data with a toy model

LHAASO Collaboration. (PRL, 2023)

- Toy model prediction: local CR × gas column (PLANCK dust opacity)
- Measured fluxes are higher by a factor of 2~3 than predictions: unresolved sources or propagation effect?

Diffuse emissions from Fermi-LAT observations

10-3

• Energy cut: 1 GeV to 500 GeV

Confront wide-band observations with a GALPROP model

R. Zhang et al. (ApJ, 2023)

Unresolved source population?

R. Zhang et al. (ApJ, 2023)

More infromation from LHAASO-WCDA needed

Summary

- The diffuse emission from two regions of the Galactic plane was observed with high significance; Firstly detected in the outer Galaxy region!
- Spectral indices of both regions are about -3; deviation from single power-law is not evident by the current data
- The latitude distributions are consistent with the gas template, and more complicated structures in the longitude distributions
- Overall fluxes of are higher by a factor of several than the local CR interaction with l.o.s. gas —— unresolved sources or propagation effect?
- Wide-band diffuse emissions show significant excesses, and a population of unresolved sources may have substantial contribution.

Residual source contamination

Systematic uncertainties

Spectrum results	Inner		Outer		
	Flux^a	Index	Flux^a	Index	
Statistics	$1.00\pm0.04_{\rm stat}$	$-2.99\pm0.04_{\rm stat}$	$0.44\pm0.04_{\rm stat}$	$-2.99\pm0.07_{\rm stat}$	
Layout	1%	0.02	1%	0.02	
γ/CR Discrimination	2%	0.04	5%	0.06	
Background Estimation	5%	0.05	10%	0.10	
Atmospheric Model	7%	0.02	7%	0.02	
Overall	9%	0.07	12%	0.12	

Test with Tibet-ASγ's mask

VHE diffuse emission by HAWC

spectrum is compatible with the spectrum of the emission arising from a CR population with an *index* similar to that of the observed CRs. When comparing with the DRAGON *base model*, the HAWC GDE flux is higher by about a factor of 2. Unresolved sources such as pulsar wind nebulae and teraelectronvolt halos could explain the excess

HAWC 2024, ApJ, 961, 104