Energy evolution of cosmic-ray mass and intensity measured by the Pierre Auger Observatory

Vladimír Novotný^a on behalf of the Pierre Auger Collaboration^b

^a Institute of Particle and Nuclear Physics, Charles University, Prague, Czech Republic ^b Observatorio Pierre Auger, Av. San Martín Norte 304, 5613 Malargüe, Argentina

MINISTRY OF EDUCATION, YOUTH AND SPORTS

RICAP-24, Frascati, 24/09/2024

The Pierre Auger Observatory – hybrid detector

Fluorescence detector (FD)

- 4 sites with 27 telescopes
 - 24 horizontally-looking
 - 3 High Elevation Auger Telescopes (HEAT)

Surface detector (SD)

- 1600 water-Cherenkov stations
- total area 3000 km²
- triangular grid arrays
 - spacing of 1500 m, 750 m and 433 m

Energy spectrum – SD calibration

Vertical SD events - 1500 m (θ < 60°) and 750 m (θ < 40°)

Energy spectrum – exposure

- SD exposure is geometrical results above full trigger efficiency threshold
- FD exposure based on detailed MC simulations (showers and detector)
 - hybrid uses FD+1 SD station to determine shower geomtery
 - Cherenkov events reconstructed using profile-constrained geometry fit

Energy spectrum – individual methods

- FD ontime ~14% of total time, better energy resolution
- SD ontime ~100% \rightarrow larger statistics
- spectra consistent within uncorrelated systematic uncertainties

Energy spectrum – combined

- combined using forward-folding of all data distributions at once
 - accounts for residual systematic unc.
- complex structure five breaks observed

Energy spectrum – systematic uncertainty

- syst. unc. dominated by energy scale systematics of 14%

- ~30% when propagated to CR intensity

Mass composition – FD method

- possible selection bias diminished by fiducial field of view selection
- tails corrected for residual acceptance decrease
- Auger X_{max} results are directly comparable with the output of shower simulations
- systematic uncertainty \leq 10 g cm⁻², resolution 26 15 g cm⁻² Phys. Rev. D 90 (2014) 122005

Mass composition – SD method

- reconstructed using **deep neural network** – recurrent+convol. networks (LSTMs+HexaConv)

1100

- trained on EPOS-LHC generated MC library full simulation of the SD response
- calibrated to the FD X_{max} scale on the hybrid subset
- syst. unc. 9 13 g cm⁻², resolution 40 20 g cm⁻²

Mass composition – X_{max} results

- getting lighter up to 3 EeV, then getting heavier
- stdev. contain shower-to-shower fluctuations + changes in mass more difficult to interpret
- AERA (radio) measurements also available low statistics
 - compatible with FD results

Mass composition – X_{max} interpretation

- average + variance in a simple relation:
- moments of In A from inversion
 - contains model-dependent parameters
- QGSJet-II.04 does not describe well Auger data

$$\langle X_{\max} \rangle = \langle X_{\max} \rangle_{p} + f_{E} \langle \ln A \rangle$$

 $\sigma^{2}(X_{\max}) = \langle \sigma_{sh}^{2} \rangle + f_{E}^{2} \sigma^{2}(\ln A)$

Mass composition – X_{max} interpretation

- fits of the whole X_{max} distributions from FD in each energy bin \rightarrow

- resembles Peters cycle
- very pure at highest energies
- almost no Fe

Mass composition – X_{max} scale

- interpretation crucially depends on models and all seem to be inappropriate

- study: fits of both X_{max} and S(1000) distributions in zenith angle bins, results are
 - **shift in X**_{max} necessary **20-50 g cm**⁻² (differs between models)
 - shift in S(1000) necessary \rightarrow level of muon discrepancy 15-25%
 - mass composition heavier composition inferred
 - valid in $10^{18.5} 10^{19.0}$ eV (but the elongation rate very rigid)
- interpreted this way, we have very pure Fe-like composition at the highest energies

Breaks in intensity and X_{max}

- **substructure** in the high energy part of both measurements
- X_{max} seen in SD DNN, FD lacks statistics to distinguish such breaks

arXiv:2406.06315 (submitted to Phys. Rev. Lett.)

Conclusions

- Phase I of the Pierre Auger Observatory measurements provided high quality data
- Evolution of the cosmic-ray intensity with energy is complex several breaks
- Mass composition evolves from mixed to light and then to intermediate/heavy
- When seen with sufficient statistics (SD) the $\langle X_{max} \rangle$ also exhibits substructure

Astrophysical interpretation to be revealed

Backup – mixed composition around ankle

- largely model-independent

PoS(ICRC2019)482

Phys. Lett. B762 (2016) 288-295

Backup – SD433 calibration

Backup – spectral features

18

Comparison with other experiments

Backup – SD750 vs. Cherenkov syst. unc.

