The SuperCDMS experiment at SNOLAB

Contents:

- Motivation
- SuperCDMS goals
- Experiment challenges
 - Detectors
 - Backgrounds
- Current status
- Summary and outlook

On behalf of SuperCDMS, Vijay Iyer University of Toronto

Cryogenic Dark Matter Search

SUPER

Roma International Conference on AstroParticle Physics (23-27 September, 2024)

24 September, 2024

Motivation for sub-GeV dark matter search

Motivation for sub-GeV dark matter search

Motivation for sub-GeV dark matter search

Super Cryogenic Dark Matter Search Goals

- Search for dark matter with masses < 10 GeV/c².
- Observe CEvNS with future upgrades in design.

Challenges

- 1. Detectors
 - a. Lower energy threshold
 - b. Better energy resolution
- 2. Backgrounds
 - a. Environmental
 - b. Intrinsic
- 3. Commissioning and operations

Challenge 1

Building a sensitive detector.

In most direct dark matter search experiments, there can be two types of interactions:

- > Both NRs and ERs will produce signals based on the detector material: charge, heat, light.
- > Ability to discriminate between NRs and ERs allows us to reject several backgrounds.
- SuperCDMS will use two types of detector material Ge and Si
- \succ Can measure charge and heat signals.

• Measures number of charges (n_{eh}) from the charge electrodes.

- Measures total phonon energy (E_t) from transition edge sensors (TES).
- Drifting electrons/holes across a potential (V_b) generates Neganov-Trofimov-Luke (NTL) phonons.

Sensors measure E_t, and n_{eh}

Total phonon Primary recoil energy energy NTL phonon energy \bullet Increasing $V_{\rm b}$ lowers recoil energy threshold.

- Phonons are measured using Tungsten Transition Edge Sensors (TES)
- Operate at near superconducting temperature (T_c).
- Compared to Soudan, the SNOLAB detectors optimize the sensor geometry and T_c providing better energy resolution.

- Useful for surface background rejection.
- 10 Ge and 2 Si iZIP detectors at SNOLAB.
- ER/NR discrimination.

- Lower energy threshold compared to iZIPs.
- No ER/NR discrimination.
- 8 Ge and 4 Si HV detectors at SNOLAB.

	iZIP		HV	
	Ge	Si	Ge	Si
Number of detectors	10	2	8	4
Phonon resolution (eV)	50	25	10	5
Ionization resolution (eV)	100	110	-	_
Voltage Bias (V)	6	8	100	100

Phys. Rev. D 95 (2017)

Challenge 2

Backgrounds

Backgrounds

- 2 km underground.
- Cleanroom (class 2000).
- Large lab (~5000 m²)

 Muon flux from cosmic rays reduced by a factor of 100 compared to Soudan mine.

- Large support staff(>100)
- Availability of surface facilities.

7000

Zi-yi Guo et al 2021 Chinese Phys. C 45 025001

Shielding setup

Backgrounds

> Detector internal contamination:

- ³H (in both Ge and Si detectors)
- ³²Si (in Si detectors)

 \succ Material internal contamination or activation:

• ⁶⁰Co, ⁴⁰K, ²³⁸U, ²³²Th

Prompt interstitial Radon

Backgrounds

> Detector internal contamination:

- ³H (in both Ge and Si detectors)
- ³²Si (in Si detectors)

 \succ Material internal contamination or activation:

• ⁶⁰Co, ⁴⁰K, ²³⁸U, ²³²Th

Prompt interstitial Radon

Challenge 3

Commissioning and operations

Experiment setup

(C))

SuperCOMS

Dilution refrigerat.

Sup

Shielding and Outermost can

20

Fridge monitor

25

SCDMS CRYOGENIC CONTROLS CABINET #1

Cryogenic controls

SCDMS CRYOGENIC CONTROLS POWER SUPPLY

Testing at Cryogenic Underground TEst Facility

- October 23, 2023 March 13, 2024.
- A tower of 6 HV detectors:
 - 2 Silicon and 4 Germanium.
 - Operated at a max voltage of 100 V.
 - ~151 days covering 4 thermal cycles.
 - ~2 months of calibration data.
 - ~2 weeks of low background data.
 - Several weeks on sensor performance testing, HV testing, developing detector conditioning protocols.

Summary

- SuperCDMS experiment is aimed at sub-GeV dark matter searches.
- The experiment is currently being built at SNOLAB.
- HV tower tests at CUTE validate the expectations from the detectors.
- Expect to finish building the experiment and start a science run by 2026.

Outlook

Cryogenic Dark Matter Search

- SuperCDMS has a detector R&D program:
 - Gram-scale, single electron resolution detectors.
- Novel directions explored by collaborators like building Diamond, SiC detectors.
- Optimize signal, backgrounds modeling and simulations of detector response.
- Continue to improve our understanding of crystal properties like ionization yield.

Back up