Latest Results of the Muon g-2 Experiment at Fermilab

Matteo Sorbara on Behalf of the Muon g-2 Collaboration

University and INFN Roma "Tor Vergata"

Roma International Conference on AstroParticle Physics Frascati, 23-27 September 2024

M. Sorbara

Muon g-2

Spin Precession in a Magnetic Field

A particle's spin in a magnetic field experience a torque and a precession motion proportional to it's magnetic moment, defined as

$$\vec{\mu} = g \frac{e}{2m} \vec{S}$$

The spin precession frequency is given by:

$$\omega_s = g \frac{e}{2m} B$$

- Dirac equation predicts naturally g = 2 for a spin $\frac{1}{2}$ elementary particle
- Define the anomaly as $a_{\mu} := \frac{g-2}{2}$
- Radiative corrections give a positive contribution. Schwinger: $a_{\mu} \sim \frac{\alpha}{2\pi} \approx 0.00116$ (at first order)

 $a_{\mu}=0+a_{\mu}^{QED}$

- Highest and most precise contribution to a_{μ}
- Computed perturbatively

$$a_{\mu}^{QED} = \sum_{n \ge 1} c^{(2n)} \left(\frac{\alpha}{\pi}\right)^n$$

- Contribution due to the Z, W, H exchange
- Computed at 2 loops level
- Well known and with small uncertainty

- Second dominant uncertainty source
- At low energies:
 - Data driven
 - Lattice QCD
- Perturbative QCD for c-quark loops

$$a_\mu = 0 + a_\mu^{QED} + a_\mu^W + a_\mu^{HLbL} + a_\mu^{HVP}$$

Dirac

QED

Weak

Hadronic LbL

Hadronic Vacuum Polarization

- $a_{\mu}^{HVP,LO}=rac{1}{4\pi^3}\int_{m_{\pi}^2}^{\infty}ds\;K(s)\;\sigma_{e^+e^ightarrow had}^0$
- Lattice QCD calculation shows a discrepancy with the dispersive approach

M. Sorbara

Muon g-2

• Dispersive (data driven):

4 / 20

The Experiment

How to measure a_{μ}

The measurement is based on the anomalous spin precession frequency:

$$\vec{\omega}_{a} = \vec{\omega}_{spin} - \vec{\omega}_{cyclotron} = a_{\mu} \frac{eB}{mc}$$

• $a_{\mu} = 0$ spin and momentum precess at the same rate

How to measure a_{μ}

The measurement is based on the anomalous spin precession frequency:

$$\vec{\omega}_{a} = \vec{\omega}_{spin} - \vec{\omega}_{cyclotron} = a_{\mu} \frac{eB}{mc}$$

- $a_{\mu} = 0$ spin and momentum precess at the same rate
- $a_{\mu} > 0$ the spin has a precession motion around the momentum direction

 a_{μ} can be extracted from a polarized muon beam by measuring ω_a and **B**:

$$a_{\mu} = rac{\omega_a}{B} \cdot rac{mc}{e}$$

How to measure a_{μ} (for real)

$$a_{\mu} = \frac{\omega_{a}}{\tilde{\omega}_{p}'(T)} \underbrace{\frac{\mu_{p}'(T)}{\mu_{e}} \frac{m_{\mu}}{m_{e}} \frac{g_{e}}{2}}_{\text{External}}$$

We extract the ratio:

Magnetic field is expressed in term of the shielded proton precession frequency (ω'_p) . External factors are known to very high precision (22 ppb uncertainty).

$$R'_{\mu} = \frac{\omega_{a}}{\tilde{\omega}'_{p}(T)} = \frac{f_{clock} \cdot \omega_{a}^{meas} \cdot \underbrace{(1 + C_{e} + C_{p} + C_{dd} + C_{ml} + C_{pa})}_{f_{calib} \cdot \langle \omega'_{p}(x, y, \phi) \cdot M(x, y, \phi) \rangle \cdot \underbrace{(1 + B_{k} + B_{q})}_{\text{Transient Fields}}$$

- ω_a^{meas} is the the measured precession frequency
- $\tilde{\omega}'_p(T)$ is the the magnetic field magnitude averaged around the ring
- $M(x, y, \phi)$ is the beam distribution along the ring

Inflector

Quadrupoles

Kickers

How to measure the spin precession frequency

The muon polarization is measured using the parity-violating decay

High momentum e^+ are emitted preferentially in the muon's spin direction

Count the number of high energy positrons in a given direction as a function of time to extract the precession frequency

Detect decay positrons

- 24 PbF2 calorimeters along the inner circumference (out of vacuum)
- Čerenkov light is read by large area SiPM
- Gain is monitored at a 10^{-4} level of stability by state of the art Laser Calibration System

Wiggle Plot

The time distribution of the high energy positrons shows the muons exponential decay modulated by the anomalous precession frequency.

The distribution is fitted to extract ω_a , including:

- Beam Dynamic terms to account for beam oscillations that distort the modulation signal
- Muon Losses that distort the exponential shape of the distribution

Measure Beam Distribution

- Two tracker stations monitor the beam profile back-tracking decay positrons
- Provides a non-destructive reconstruction of the beam position over time

Weighted Magnetic Field

- A set of NMR fixed probes measure the field coninuously around the storage region
- Trolley runs to measure the magnetic field inside the storage region
- Dedicated trolley runs every 2/3 days and whenever the magnet is turned on/off
- A field map in the storage region is interpolated using fixed probes and trolley data
- The field map is then weighted with the muon distribution obtained from the tracker

The Result

Run 1 result

On April 2021 we published our first result:

- Based on 5% of the data collected
- Confirmed BNL experiment result (20 years before)
- Increased the discrepancy with the Theory Initiative White Paper to 4.2σ

After Run 1 many efforts were done to improve the uncertainties:

Statistics

- Factor 4.7 in the number of analyzed positrons (weighted, E > 1 GeV, $t > 30 \ \mu$ s)
- Statistical uncertainty decreased from 434 ppb (Run 1) to 201 ppb (Run 2-3)

- Statistics
- Beam Storage Quadrupoles
 - Damaged resistors in Run 1 caused beam motion during the fill; re-designed for Run 2 to reduce beam motion
 - Reduced uncertainty on C_{pa} from 75 ppb to 13 ppb

- Statistics
- Beam Storage Quadrupoles
- Beam Storage Kickers
 - Kickers strength improved to design value at the end of Run 3
 - Beam more centered, reduced oscillations

- Statistics
- Beam Storage Quadrupoles
- Beam Storage Kickers
- Temperature stability
 - Thermal insulation added to the ring between Run 1 and Run 2 to improve thermal stability of the magnet
 - A/C hall cooling after Run 2 further improved the stability
 - Reduced magnetic field and SiPM gain variations due to temperature

- Statistics
- Beam Storage Quadrupoles
- Beam Storage Kickers
- Temperature stability
- Field Transient Measurement
 - Quadrupoles transient field B_q measured all around the ring (only 2 locations in Run 1)
 - Improved Kicker transient field measurement with fiber magnetometer

- Statistics
- Beam Storage Quadrupoles
- Beam Storage Kickers
- Temperature stability
- Field Transient Measurement
- Analysis Technique Improvements
 - New positron reconstruction algorithms
 - Improved Pile-Up subtraction technique

Total Uncertainty:

$$\begin{array}{ll} \sigma^{\textit{Run1}} &= 434^{\textit{Stat}} + 157^{\textit{Syst}} ~\textit{ppb} \\ \sigma^{\textit{Run2-3}} &= 201^{\textit{Stat}} + 70^{\textit{Syst}} ~\textit{ppb} \end{array}$$

Run 2 and 3 result

New result released on the 10th of August 2023

- Result paper: Phys.Rev.Lett. 131 (2023) 16, 161802; Analysis Details: Phys.Rev.D 110 (2024) 3, 032009
- In excellent agreement with both BNL and Run 1 result
- Reduced by a factor 2.2 statistical and systematic uncertainty

$$\begin{array}{ll} a^{Run2-3}_{\mu} &= 116\ 592\ 057(25)\times 10^{-11} & [0.21\ {\rm ppm}] \\ a^{Run1-2-3}_{\mu} &= 116\ 592\ 055(24)\times 10^{-11} & [0.20\ {\rm ppm}] \\ a^{ExpAvg}_{\mu} &= 116\ 592\ 059(22)\times 10^{-11} & [0.19\ {\rm ppm}] \end{array}$$

M. Sorbara

16 / 20

Theory Comparison

• Fermilab result alone yelds to a $> 5\sigma$ discrepancy with the 2020 Theory Initiative calculation

BMW/DMZ24 Collaborations arXiv: 2407.10913

Theory Comparison

- Fermilab result alone yelds to a $> 5\sigma$ discrepancy with the 2020 Theory Initiative calculation
- HVP value from lattice calculations reduces the discrepancy with the experimental value

BMW/DMZ24 Collaborations arXiv: 2407.10913

Theory Comparison

- Fermilab result alone yelds to a $> 5\sigma$ discrepancy with the 2020 Theory Initiative calculation
- HVP value from lattice calculations reduces the discrepancy with the experimental value
- Recent results on $e^+e^- \rightarrow \pi^+\pi^-$ cross section from CMD-3 (below 1 GeV) further reduces the discrepancy
- Many efforts on the theory side to resolve theoretical ambiguities

BMW/DMZ24 Collaborations arXiv: 2407.10913

Conclusions and Future Perspectives

Conclusions

- Presented the result for the measurement of a_{μ} with the Run 2 and 3 data
- Result is in good agreement with both the Run 1 and the BNL results
- Improved by a factor 2.2 both on statistical and systematic uncertainties
- Reached the systematic goal of 70 ppb from the TDR
- Achieved precision of 0.19 ppm on the combined a_{μ} measurement

Future Perspectives

- On the 9th of July 2023 concluded the data-taking of the experiment reaching the statistical goal of 21 times the BNL dataset
- Run6 dedicated to systematic studies to better understand the beam related corrections
- Between 2023 and 2024 conducted an intensive campaign of systematic measurements on the magnet
- Run 4-5-6 under analysis, full result expected to be completed in 2025
- Same datasets analyzed for Muon EDM, Dark Matter and Lorentz-CPT violation searches

Thanks for all the Muons

