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[Credit: LIGO/Virgo/KAGRA/C. Knox/H. Middleton]

03atb

2019 - 2020

A new era in astrophysics
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Gravitational wave detection B

laser
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The winning strategy was to use the light of a laser as a ruler in an interferometric detector. .
Simple idea of Michelson Interferometer setup, on which many upgrades have been made e
to further improve its sensitivity.
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» System of freely falling bodies (mirrors)

Al

screen

» As a gravitational wave passes, the distance between two bodies subjected only to gravitational forces changes by: AL = %hL

. THE EFFECT OF A GW IS SO MINUSCULE AND ¢ SCENNSTS HOPE TO (DENTIFY THE
- EASLY CONFUSED WITH RANDOM NOISE, YOU PATTERNS OF GRAVITATIONAL WAVES BY
\\ruw.mmm»ummm, c%gmmmamm P

T'S LIKE TRYING TO
(DENTIFY A SONG BEING
HUMMED AT A NOISY PARTY.
A VERY VERY NOISY PARTY.

3-km Fabry-Perot cavities

Beamsplitter

Signal Recycling Mirror

Photodetector
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Sensitivity curves (M2JJVIRGD

AdV+ project sensitivity curve
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3 km arm Michelson interferometer tuned at dark fringe

40 kg, SiO2 substrate

dvanced GW Detectors

Circulating TEM,, mode from CW Nd:YAG source @1064 nm+ injected sidebands

Optical path folding with resonant Fabry Perot arm cavities
Power-recycled/Signal-recycled configuration
High intra-cavity power build up (~ 200 kW)
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3G detectors

Third-generation, gravitational-wave observatory:

» a greatly improved sensitivity

Einstein Telescope

\ E
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underground infrastructure

10km long arms bl
instein Telescope

three nested detector: each will comprise two interferometers, one specialised for detecting low-frequency (ET-LF)
gravitational waves and the other one for the hlgh frequency (ET-HF) part.

cryogenic temperature (down to 10 — 20K)

O KAGRA (2.5 Gen)

200 kg, Si or Sapphire substrate O Cosmic Explorer
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Laser Laser
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Core optics — dielectric optical mirrors
Bragg reflectors
* Bulk + multi-layer reflective coatings
* A stack of alternate layers of high- and low- refractive index
materials
« Accurate choice of thickness = 4/, r \ - ~N

» Constructive interference
[ 1]/

» High-quality reflector

np

2N
1—ngy (E) N doublets <

r= 2N
1+n (—)
sub ny

Many high-precision experiments use laser interferometry with

resonant optical cavities:

Gravitational wave interferometry, high frequency stability laser cavity, BULK

atomic spectroscopy, atomic clock, ... Neub
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Core optics — state of the art (M2JJIVIRGD

» Test masses (mirrors) in AdV+:
= made with high purity fused silica, SiO,
= diameter 35 cm, 40 kg
» Suspended to filter out seismic motion, in a quasi-monolithic fused
silica arrangement, in vacuum
» Multi-layered coating made of amorphous oxides (TiO,:Ta,0:/SiO, )
with very low absorption < ppm

Flatness Thickness uniformity ﬂ\bsorption Scattering
<0.5 nm RMS 0.05 <0.4 ppm <10 ppm
(within @ 150 mm) (within @ 150 mm)

. SiO, thinner layer (cap)
e

B 72,0,TiO, layer Coating material ~ TasO5-TiO5  SiOq =
~ Si0; | ; r -
S . - n (at 1064 nm)  2.09+0.01  1.45+0.0 i
Ta,05-TiO; thicker layer =
- De [g/('.m?’} 6.65+0.07 2.2040.04 o
3 a [107% rad Hz ] 1.4340.07  0.204£0.04 T 04 -
b 0.10940.005 0.03040.024 £ I ——— —u.?_—___LL__E——FS. 0
/1] Y. [GPa] 120-+4 7041 0 S e 'Y
AN Ve 0.29£0.01 0.19£0.01 = CEEE 3 N e a e s .
Table 3.2: Optical and mechanical parameter of present coating materials [79]: the o~ 1 [-'_5 . :
loss angle can be extrapolated from a and b parameters and is based on the frequency 1 “{ -I[];
_K -, dependence ¢eont(f) = af®. . i 2 z
LABORATOIRE G. Cagnoli et al., Mode-dependent mechanical losses F requency [H',
[ M:JEE'@E; in disc resonators, Phys. Lett. A (2018), Vol 382 - I c “l
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AdV+ project sensitivity curve

Strain [1/+/Hz]

Power induced optical aberrations:-

Frequency [Hz)
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Power absorbed in optics < 100 mW coatings and substrates of the optics

(dynamical effects). e T T
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» Manufacturing errors (mismatch of radius of

» Inhomogeneity of refractive index, impurities ...
curvature, ...)

Thermal lens

%] v' Thermal lensing v' Thermo-elastic effect
8] AL(T) AL() h
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OPL distortions due to dependence of .ange of  radius ot curva gre’ (RoC) o
.. - mirrors due a non-zero material’s thermal
refractive index from temperature variation . . .
expansion coefficient.
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Thermal Compensation System (TCS) @2J)JVIRGD

Strategy: introduce a complementary distortion with respect to the main laser one, restoring the nominal

optical configuration.

TCS actuators :
v CO, laser projector (50 W & 10 W)
v' Axisymmetric center & annular patterns
v' Ring Heaters on AR surface -@‘
[

lens

TCS sensing :
v" Hartman Wavefront
Sensors (HWS)

v" Phase Cameras PROBE
BEAM

dynamical adaptive optical system

HWS plate

SLED

Telescope of
magnification
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Future adaptive optic developments

The TCS has proven to be more versatile than originally anticipated, showing utility in various contexts.
Adaptive optics, with its flexibility, will be a key feature in future detectors:

1. Increased laser power will amplify the impact of residual optical aberrations;
2. Readiness to address unexpected defects and compensate for operational aberrations not accounted for

in the initial design;

3. The need for independent actuators to prevent interference and ensure efficient compensation.
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» Deformable Mirror (DM)

= imprint a phase on CO2
beam to obtain the desired -
intensity pattern i

Y [m]

] 5
X [m] 10

=  Correction of non axisymmetric residual

B > CO, Mode Cleaner (MC)

e " Efficiency of DAS correction strictly
related to the laser beam quality

=  TEM,, Gaussian VS High Order Modes

i = Mode cleaner cavity for high power

CO, laser has never been realized
before
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Double RH .

RH introduces a thermal lens ¥
(C;,) inside the bulk ==
The C;, could be compensated, &
placing a second RH near the . .
HR surface, such that the OPL is
almost constant along the -
thickness. .

L] L] (;f',-M
» Point Absorbers (PA) mitigation AT,
= Highly absorbing areas on the coatings of the core optics

= The corrective heating pattern is reproduced by a binary mask illuminated
by a thermal source, with each hole acting as an actuator.

rr Cry
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AdV+ project sensitivity curve

Coating thermal noise

» Coating thermal noise (CTN) limits the detection in the middle
frequency bandwidth

* The key parameters are:

@chanical loss

Temperature 1 Coatin
T 1

_ g
/ thickness

F w2 Q teoat V_nEXT (post O5) upgrades:
CTN(f) 106 b Larger beams on end test masses
L\ « 6 cm radius = 10 cm radius

./ Beam-size » Larger end mirrors
* 35 cm diameter = 55 cm diameter

* 40 kg = 100 kg
* New suspensions/seismic isolators
for large mirrors
New mirror coatings
* Lower mechanical losses by a factor 3,
less point defects, better uniformity

3° generation detectors (ET):

Cryogenic temperature (down to 10 - 20K)
10km long arms

Larger beams on larger test masses

New mirror coatings
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Development of materials for ultra-low loss
optical coatings

GOAL:

increase the mechanical performances of today's reflective coatings, retaining their outstanding

Candidate
materials

Amorphous
materials

Crystalline
coatings

optical and morphological properties

Trial and error approach VS systematic approach
» deeper understanding of the underlying physical mechanisms driving the losses

Overall disordered structure, locally arranged. » Floppy (optimal distribution of TLS) materials

Dissipative mechanism * Ti02:Ge02, TiO2:Si02

* Iwo Level System (TLS): metastable states separated ) Stiff (reduced number of TLS) materials
by an energy barrier e SiN aSi

Band gab free of localized states, dissipative
mechanisms are limited

X/

% transfer and maximum available size;

development costs are currently a major
limitation

* GaAs/AlGaAs, crystalline coatings



Development of materials for ultra-low loss
optical coatings

GOAL:

increase the mechanical performances of today's reflective coatings, retaining their outstanding
optical and morphological properties

lon Beam Sputtering (IBS)
Different deposition methods and - Magnetron Sputtering (MS)

L fine-tuning deposition parameters * Chemical Vapor Deposition (CVD)
*  Molecular-beam epitaxy (MBE)

Annealing h
' ; . e improve the atomic organization of the coating in the medium-range order and reduce
&' Post-depos:tlon treatments its mechanical loss angle
¢ modify the chemical composition (desorption of contaminants)
L e controlled crystallization )
~

* Enhances material properties (like refractive index and mechanical losses)

¥ an Y

A Mixing » Reduces stress

* Prevents crystallization, allowing for higher annealing temperatures.

+¢ Introduces an additional variable that must be precisely managed during fabrication




Development of materials for ultra-low loss
optical coatings

GOAL:

increase the mechanical performances of today's reflective coatings, retaining their outstanding
optical and morphological properties

ndickrt = combinaton of 6 beans.

Bragg reflectors: thickness optimization, to maintain the desired reflectivity
and reduce coating thermal noise (CTN)

‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Nano-layering: periodic stack of ultrathin (nanometer-scale) films that behaves
like a homogeneous material with a tunable refractive index. It can be annealed
at higher temperatures, thanks to geometrical suppression of crystallization

% Multimaterial approach: Combination of different materials with low optical
. \‘ absorption near the surface and minimized mechanical losses deeper within

Coating structure and design




Development of materials for ultra-low loss
optical coatings

GOAL:
increase the mechanical performances of today's reflective coatings, retaining their outstanding optical and
morphological properties

: ; Coating deposition techniques : :
Candidate materials Coating structure and design
and treatments

Investigation techniques:

* Optical properties: measurement of optical absorption and/or extinction coefficient and refractive index (spectroscopic ellipsometry)

* Mechanical dissipation properties: measurement of loss angle and substrate preparation procedure (thermal annealing and polishing of
barrel), density and elastic constants (Brillouin spectroscopy); numerical simulations (molecular dynamics, FEA)

* Microscopic structure: chemical composition and stoichiometry (XPS), crystallization (XRD, Raman spectroscopy); local molecular structures
(Raman sp.); topology and surface composition (AFM and SEM)

* Thermal and opto-thermal properties: optical path as a function of temperature (thermo-refractive measurement); measurement of the
coefficient of linear thermal expansion (Curvature measurement)

» Comprehensive picture of the relevant physics of a given material




Conclusion

* Current coatings are the best optical component ever manufactured so far, in terms of excellent
surface figure, really low absorption, very low scatter.

* Improvements are still needed to tackle with:

> Power induced optical aberrations » Coating thermal noise

* Introduce a complementary distortion with * Many knobs for reduce CTN (T, thick, beam
respect to the main laser one with TCS size, loss angle)

* Improve aberration identification and * Ultra-low loss material research
correction of non axisymmetric residual and * Chose candidate materials with
point-like defects systematic approach

 Ready to address unexpected defects and = Coating deposition techniques and
compensate for operational aberrations not treatments
accounted for in the initial design = Coating structure and design

 Indipendent actuators to prevent interference = Extensive experimental investigation

and ensure efficient compensation techniques
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