Advanced Optics Research in Gravitational Wave Detection

<u>Diana Lumaca</u>, L. Aiello, E. Cesarini, M. Cifaldi, V. Fafone, M. Ianni, M. Lorenzini, Y. Minenkov, I. Nardecchia, P. P. Palma, A. Rocchi, V. Scacco, C. Taranto

RICAP-24 Roma International Conference on AstroParticle Physics

Outline

- 1. A new era in astrophysics
- 2. Gravitational Waves detection
 - a. Sensitivity curves
 - b. Present and future GW detectors (Virgo, LIGO, KAGRA, ET)
- 3. Core optics: advanced optical technologies
- 4. Power-induced optical aberrations
 - a. Thermal Compensation System
 - b. Adaptive optics developments
- 5. Development of materials for ultra-low loss optical coatings
 - a. Candidate materials
 - b. Coating deposition techniques and treatments
 - c. Coating structure and design
 - d. Experimental investigation techniques
- 6. Conclusions

A new era in astrophysics

O1: Sept. 2015 – Jan. 2016
 GW150914: the birth of GW astronomy ^{1.0}/_{0.5}

• O2: Nov. 2016 – Aug. 2017 GW170814: the first triple detection GW170817: the first neutron stars merger detected

• O3a: Apr. 2019 – Sept. 2019 GW190521: BH-BH merger to IMBH

• O3b: Nov. 2019 – Mar. 2020 GW200115: the brightest NS-BH merger

- O4a May 2023 Jan. 2024
- O4b: Apr 2024 June 2025
 - LIGO+Virgo
 - Kagra to join in 2025 to complete commissioning

[Credit: LIGO/Virgo/KAGRA/C. Knox/H. Middleton]

RICAP-24 Roma International Conference on AstroParticle

Gravitational wave detection

The winning strategy was to **use the light of a laser as a ruler** in an interferometric detector. Simple idea of **Michelson Interferometer setup**, on which many upgrades have been made to further improve its sensitivity.

System of freely falling bodies (mirrors)

> As a gravitational wave passes, the distance between two bodies subjected only to gravitational forces changes by: $\Delta L = \frac{1}{2}hL$

Sensitivity curves

The sensitivity curve of a GW detector reveals its **detection capabilities**, influenced by fundamental and technical noises.

Newtonian noise < 10 Hz</p>

- > Thermal noise \sim 10 300 Hz
- Shot noise > 300 Hz

AdV+ project sensitivity curve

Advanced GW Detectors

- 3 km arm Michelson interferometer tuned at dark fringe
- ➢ 40 kg, SiO2 substrate
- Circulating TEM₀₀ mode from CW Nd:YAG source @1064 nm+ injected sidebands
- Optical path folding with resonant Fabry Perot arm cavities
- Power-recycled/Signal-recycled configuration
- High intra-cavity power build up (~ 200 kW)

3G detectors

Third-generation, gravitational-wave observatory:

- > a greatly improved **sensitivity**
 - underground infrastructure
- Einstein Telescope
 - **10km** long arms

10 km

Einstein Telescope

RICAP-24 Roma International Conference on AstroParticle

Core optics – dielectric optical mirrors

Bragg reflectors

- Bulk + multi-layer reflective coatings
- A stack of alternate layers of high- and low- refractive index materials
- Accurate choice of **thickness** $\cong \lambda/_4$
 - Constructive interference
 - High-quality reflector

$$r = \frac{1 - n_{sub} \left(\frac{n_L}{n_H}\right)^{2N}}{1 + n_{sub} \left(\frac{n_L}{n_H}\right)^{2N}}$$

2M

N doublets

Many high-precision experiments use laser interferometry with resonant optical cavities:

<u>Gravitational wave interferometry</u>, high frequency stability laser cavity, atomic spectroscopy, atomic clock, ...

Core optics – state of the art

- Test masses (mirrors) in AdV+: \geq
 - made with high purity **fused silica**, SiO_2
 - diameter 35 cm, 40 kg
- \geq Suspended to filter out seismic motion, in a quasi-monolithic fused silica arrangement, in vacuum
- **Multi-layered coating** made of amorphous oxides (TiO₂:Ta₂O₅/SiO₂) \geq with very low absorption < **ppm**

~6 µm

AdV+ project sensitivity curve

Thermal Compensation System (TCS) (((O))/VIRGD

Strategy: introduce a **complementary distortion** with respect to the main laser one, restoring the nominal optical configuration.

RICAP-24 Roma International Conference on AstroParticle

Future adaptive optic developments

The TCS has proven to be more **versatile** than originally anticipated, showing utility in various contexts. Adaptive optics, with its *flexibility*, will be a <u>key feature</u> in future detectors:

- 1. Increased laser power will amplify the impact of *residual optical aberrations*;
- 2. Readiness to address *unexpected defects* and compensate for operational aberrations not accounted for in the initial design;
 - 3. The need for *independent actuators* to prevent interference and ensure efficient compensation.
- Deformable Mirror (DM)
- imprint a phase on CO2 beam to obtain the desired intensity pattern
- Correction of non axisymmetric residual

- \succ CO₂ Mode Cleaner (MC)
- Efficiency of DAS correction strictly related to the laser beam quality
- TEM₀₀ Gaussian VS High Order Modes
- Mode cleaner cavity for high power
 CO₂ laser has never been realized
 before

Double RH

- RH introduces a thermal lens
 (C_{TL}) inside the bulk
- The C_{TL} could be compensated, placing a **second RH near the HR surface**, such that the OPL is almost constant along the thickness.

- Point Absorbers (PA) mitigation
- Highly absorbing areas on the coatings of the core optics
 - The corrective heating pattern is reproduced by a **binary mask illuminated by a thermal source**, with each hole acting as an actuator.

Стм

RICAP-24 Roma International Conference on AstroParticle

25/09/2024

Coating thermal noise

• Coating thermal noise (CTN) limits the detection in the middle frequency bandwidth

Temperature

 $\operatorname{CTN}(f) \propto$

• The key parameters are:

<u>Arm length</u> <u>3° generation detectors (ET):</u> Cryogenic temperature (down to 10 – 20K) 10km long arms Larger beams on larger test masses New mirror coatings

AdV+ project sensitivity curve

Frequency [Hz]

V_nEXT (post O5) upgrades:

Larger beams on end test masses

• 6 cm radius \Rightarrow 10 cm radius

Larger end mirrors

- 35 cm diameter \Rightarrow 55 cm diameter
- 40 kg \Rightarrow 100 kg
- New suspensions/seismic isolators for large mirrors

New mirror coatings

 Lower mechanical losses by a factor 3, less point defects, better uniformity

RICAP-24 Roma International Conference on AstroParticle

Mechanical loss

 $\overline{f} \frac{1}{w_b^2} \varphi t_{coat}$

Coating thickness

Beam-size

Development of materials for ultra-low loss optical coatings

GOAL:

increase the mechanical performances of today's reflective coatings, retaining their outstanding optical and morphological properties

Candidate materials	 Trial and error approach VS systematic approach deeper understanding of the underlying physical mechanisms driving the losses 			
<u>Amorphous</u> <u>materials</u>	 Overall disordered structure, locally arranged. Dissipative mechanism <u>Two Level System (TLS)</u>: metastable states separated by an energy barrier Floppy (optimal distribution of TLS) materials TiO2:GeO2, TiO2:SiO2 Stiff (reduced number of TLS) materials SiN, aSi 			
<u>Crystalline</u> <u>coatings</u>	 Band gab free of localized states, dissipative mechanisms are limited transfer and maximum available size; development costs are currently a major limitation GaAs/AlGaAs, crystalline coatings 			
DICAD 24 Demo Internetional Conference en AstroDartiala				

Development of materials for ultra-low loss optical coatings

GOAL:

increase the mechanical performances of today's reflective coatings, retaining their outstanding optical and morphological properties

Ion Beam Sputtering (IBS)
 Different deposition methods and fine-tuning deposition parameters
 Ion Beam Sputtering (IBS)
 Magnetron Sputtering (MS)
 Chemical Vapor Deposition (CVD)

Annealing

• Molecular-beam epitaxy (MBE)

Post-deposition treatments
 improve the atomic organization of the coating in the medium-range order and reduce its mechanical loss angle

- modify the chemical composition (desorption of contaminants)
- controlled crystallization

	Mixing	Enhances material properties (like refractive index and mechanical losses)
		 Prevents crystallization, allowing for higher annealing temperatures.
		Reduces stress
		Introduces an additional variable that must be precisely managed during fabrication

Development of materials for ultra-low loss optical coatings

GOAL:

increase the mechanical performances of today's reflective coatings, retaining their outstanding optical and morphological properties

Development of materials for ultra-low loss optical coatings

GOAL:

increase the mechanical performances of today's reflective coatings, retaining their outstanding optical and morphological properties

Candidate materials	Coating deposition techniques	Coating structure and design	
	and treatments	couling structure and design	

Investigation techniques:

- Optical properties: measurement of optical absorption and/or extinction coefficient and refractive index (spectroscopic ellipsometry)
- <u>Mechanical dissipation properties</u>: measurement of loss angle and substrate preparation procedure (thermal annealing and polishing of barrel), density and elastic constants (Brillouin spectroscopy); numerical simulations (molecular dynamics, FEA)
- <u>Microscopic structure</u>: chemical composition and stoichiometry (XPS), crystallization (XRD, Raman spectroscopy); local molecular structures (Raman sp.); topology and surface composition (AFM and SEM)
- <u>Thermal and opto-thermal properties</u>: optical path as a function of temperature (thermo-refractive measurement); measurement of the coefficient of linear thermal expansion (Curvature measurement)

> Comprehensive picture of the relevant physics of a given material

Conclusion

- Current coatings are the best optical component ever manufactured so far, in terms of excellent surface figure, really low absorption, very low scatter.
- Improvements are still needed to tackle with:

Power induced optical aberrations

- Introduce a complementary distortion with respect to the main laser one with TCS
- Improve aberration identification and correction of non axisymmetric residual and point-like defects
- Ready to address unexpected defects and compensate for operational aberrations not accounted for in the initial design
- Indipendent actuators to prevent interference and ensure efficient compensation

Coating thermal noise

- Many knobs for reduce CTN (T, thick, beam size, loss angle)
- Ultra-low loss material research
 - Chose candidate materials with systematic approach
 - Coating deposition techniques and treatments
 - Coating structure and design
 - Extensive experimental investigation techniques

Thank you for your time and attention!

Contact: diana.lumaca@roma2.infn.it