MODELLING OF GRB 221009A THROUGH AN ANALYTICAL DESCRIPTION OF VHE **AFTERGLOW LIGHT CURVES**

Istituto Nazionale di Fisica Nucleare

Claudio Gasbarra claudio.gasbarra@roma2.infn.it

Università di Roma Tor Vergata INFN Sezione di Roma Tor Vergata

> RICAP-24 24/09/2024

C. Gasbarra^{*ab}, D. Belardinelli^b, V. Fafone^{ab}, D. Miceli^c, A. Morselli^b, G. Rodriguez Fernandez^b

a Università degli studi di Roma Tor Vergata, b INFN Sezione di Roma Tor Vergata, c Università degli studi di Padova e INFN

OUTLINE

- GRB 221009A
- Numerical model
- Analytical description
- Workflow: how to model GRB 221009A
- Parameter estimation: Maximum Likelihood
- Markov-Chain Monte Carlo
- Conclusions

Credits: NASA/Swift/Mary Pat Hrybyk-Keith and John Jones

GRB 221009A:THE B.O.A.T.

- On date 9th of October 2022 several ground- and space-based observatories detected a GRB signal
- Exceptionally bright GRB! (Brightest Of All Time)
- Redshift: z = 0.151 (724 *Mpc*)
- $E_{k,iso} \approx 10^{55} erg$
- Once-in-a-10⁴ yr event!

Credit: NASA's Goddard Space Flight Center and Adam Goldstein (USRA)

GRB 221009A DETECTION

LHAASO DATA

Data from: https://www.nhepsdc.cn/files/20230518/Figure3A_4.txt

LHAASO Collab. (Science 2023)

NUMERICAL MODEL

- Expansion governed by a self-similar solution for an adiabatic blast wave
- Relativistic fireball with a homogeneous shell approximation (neglected internal structure)
- Shock front described by an evolution of the Bulk Lorentz Factor
- e⁺e⁻ subsequently accelerated over a (broken) power-law distribution
- VHE afterglow emission due to Synchrotron and Synchrotron Self-Compton (SSC) radiation

Following: Miceli, Nava – Galaxies 2022, 10, 66

Credits: NASA/GSFC

SIMULATED AFTERGLOW LIGHTCURVES

- We can produce curves based on a set of parameters, of which we choose to let vary:
 - ϵ_e = electron energy fraction ϵ_b = magnetic energy fraction Γ_0 = bulk Lorentz factor n_0 = ISM density [cm⁻³] p = injected electrons index
- Varying these *physical* parameters, we can find set of values able to reproduce the LCs of chosen GRBs

ANALYTICAL DESCRIPTION

• We can define a smooth broken power law (BPL):

$$F(t) = \Phi\left(\frac{t}{\tau}\right)^{a_1} \left[\frac{a_1\left(\frac{t}{\tau}\right)^{1/s} + a_2}{a_1 + a_2}\right]^{-(a_1 + a_2)s}$$

Where (Fit parameters):

 $\tau = \text{peak time}$ $\Phi = \text{peak flux}$ $a_1 = \text{low time PL index}$ $a_2 = \text{high time PL index}$

s = smoothing parameter

ROMA INTERNATIONAL CONFERENCE ON ASTROPARTICLE PHYSICS – RICAP-24

ANALYTICAL DESCRIPTION

- We need to describe the LCs as dependent on the physical parameters!
- Link each fit par to each phys par through:

$$y = A x^b$$

• To have, ultimately:

$$(fit \ par) = A \left(\frac{\epsilon_e}{\overline{\epsilon_e}}\right)^{b_e} \left(\frac{\epsilon_b}{\overline{\epsilon_b}}\right)^{b_b} \left(\frac{\Gamma_0}{\overline{\Gamma_0}}\right)^{b_{\Gamma}} \left(\frac{n_0}{\overline{n_0}}\right)^{b_n} \left(\frac{p}{\overline{p}}\right)^{b_p}$$

	τ	Φ	aı	a 2	S
Α	18.2	1.2×10^{-5}	2.2	1.2	0.3
be	0.12	1.24	5.1×10^{-3}	-2.2×10^{-2}	0.13
Ь	2.2×10^{-2}	-0.87	-5.9×10^{-2}	-4.1×10^{-2}	1.3×10^{-2}
bг	-2.4	2.2	-0.16	-0.11	5.9×10^{-2}
bn	-0.3	0.2	-0.1	-3.9×10^{-3}	-1.5×10^{-2}
bp	0.6	3.0	0.7	1.0	1.8

24/09/2024

WORKFLOW ON MODELLING GRB 221009A

- Production of LCs around an initial set of values
- Derivation of the dependences between *physical* and *fit* parameters
- Writing down the analytical expression of the Flux, now expressed as F(phys) = F(fit (phys))
- Estimation of the parameters through a Maximum Likelihood Estimation
- Markov-Chain Monte Carlo to gain a confidence interval for the parameters

MAXIMUM LIKELIHOOD ESTIMATION

- We have now all ingredients linking fit parameters to physical parameters!
- Possible to write the log-likelihood

$$\ln P(y \mid t, \sigma, \epsilon_e, \epsilon_b, \Gamma_0, n_0, p) = -\frac{1}{2} \sum_n \left[\frac{(y_n - F(phys))^2}{\sigma^2} + \ln(\sigma^2) \right]$$

 We maximise it, and get a first good estimate for the physical parameters:

$\overline{\epsilon_e} = 6.5 \times 10^{-2}$	$\overline{\epsilon_b} = 1.0 \times 10^{-2}$	$\overline{\Gamma_o} = 650$	$\overline{n_o} = 0.75$	$\overline{p} = 2.01$
$\epsilon_e^{ML} = 1.0 \times 10^{-1}$	$\epsilon_b^{ML}=2.5~ imes~10^{-2}$	$\Gamma_0^{ML} = 580$	$n_0^{ML} = 2.1 (cm^{-3})$	$p^{ML} = 2.0$

MARKOV-CHAIN MONTE CARLO

- We can now run a MCMC
- "ML" as initial values
- Walkers: 32 × # par (5 physical parameters)
- 2 × 10⁴ steps

physical parameter

$$\theta_{\epsilon_e} = \frac{\epsilon_e}{\overline{\epsilon_e}} - 1$$

$$\theta_{\epsilon_b} = \ln\left(\frac{\epsilon_b}{\overline{\epsilon_b}}\right)$$

$$\theta_{\Gamma_0} = \frac{G_0}{\overline{G_0}} - 1$$

$$\theta_{n_0} = \ln\left(\frac{n_0}{\overline{n_0}}\right)$$

$$\theta_p = \ln\left(\frac{p}{\overline{p}}\right)$$

MCMC results: $\epsilon_e = 0.079^{+0.03}_{-0.03}$, $\epsilon_b = 0.023^{+0.038}_{-0.017}$, $\Gamma_0 = 820^{+240}_{-240}$, $n_0 = 0.18^{+1.55}_{-0.15}$, $p = 2.04^{+0.39}_{-0.29}$

- In this work, we got two main results:
 - we showed the developed analytical method to describe generic broken power law LCs, explaining the workflow for the modelisation of a GRB, with precise estimates of the parameters driving the emission,
 - performed a preliminar study of GRB 221009A quite good agreement
- To do:
 - production of new data for other sets of parameters
 - try a different function for the fit physical parameters relation
- Better results soon to come!

Thanks for your attention!

CLAUDIO GASBARRA

ROMA INTERNATIONAL CONFERENCE ON ASTROPARTICLE PHYSICS – RICAP-24