ALPs searches with the First Large-Sized Telescope

IVANA BATKOVIĆ ON BEHALF OF CO-AUTHORS MICHELE DORO AND GIACOMO D'AMICO

FOR THE LST COLLABORATION

Strong CP problem

- ✦ R.D. Peccei and H. Quinn; 1977.
- ✦ Spontaneously broken global symmetry
- ✦ S. Weinberg and F. Wilczek; 1978. **Axion**

 $m_a \simeq 6 \times 10^{-6} \text{eV}$ 10^{12} GeV f_a

ivana.batkovic@unipd.it, ALPs searches with LST-1, RICAP September 2024

CTAC EST COLLABORATION

Strong CP problem

- ✦ R.D. Peccei and H. Quinn; 1977.
- ✦ Spontaneously broken global symmetry
- ✦ S. Weinberg and F. Wilczek; 1978. **Axion**

$$
m_a \simeq 6 \times 10^{-6} \text{eV} \frac{10^{12} \text{ GeV}}{f_a}
$$

 f_a – PQ axion decay constant ~ v_{weak} ~ 246 GeV

Axion-like particles (ALPs)

CTAO EST COLLABORATION

- ✦ Pseudo-Nambu-Goldstone bosons emerging from different theories
- \triangleleft Mass and coupling are independent

Strong CP problem

- ✦ R.D. Peccei and H. Quinn; 1977.
- ✦ Spontaneously broken global symmetry
- ✦ S. Weinberg and F. Wilczek; 1978. **Axion**

$$
m_a \simeq 6 \times 10^{-6} \text{eV} \frac{10^{12} \text{ GeV}}{f_a}
$$

Axion-like particles (ALPs)

CTAO EST COLLABORATION

- ✦ Pseudo-Nambu-Goldstone bosons emerging from different theories
- \triangleleft Mass and coupling are independent

Dark Matter

Can be produced in the early Universe through the misalignment mechanism*: **Dark Matter ALPs**

*Arias, P.; Cadamuro, D.; Goodsell, M.; Jaeckel, J.; Redondo, J.; Ringwald, A.; **WISPy cold dark matter**. J. Cosmol. Astropart. Phys. 2012, 013

- ✦ Observable through interaction with photons
- ✦ Extremely important for detection of axion, i.e. dark matter axions, solar axions…

 γ γ $g_{a\gamma\gamma}$

a

$$
\mathcal{L}_{a\gamma\gamma} = -\frac{g_{a\gamma\gamma}}{4} F_{\mu\nu} \tilde{F}^{\mu\nu} a
$$

ivana.batkovic@unipd.it, ALPs searches with LST-1, RICAP September 2024

CTAO EST COLLABORATION

- ✦ Observable through interaction with photons
- ✦ Extremely important for detection of axion, i.e. dark matter axions, solar axions…

a γ γ $g_{a\gamma\gamma}$

$$
\mathcal{L}_{a\gamma\gamma} = -\frac{g_{a\gamma\gamma}}{4} F_{\mu\nu} \tilde{F}^{\mu\nu} a
$$

✦ Magnetic field is "enabling mixing" between a VHE photon and an axion:

CTAC EST COLLABORATION

- ✦ Observable through interaction with photons
- ✦ Extremely important for detection of axion, i.e. dark matter axions, solar axions… γ

 a_{-} γ !"" !""

$$
\mathcal{L}_{a\gamma\gamma} = -\frac{g_{a\gamma\gamma}}{4} F_{\mu\nu} \tilde{F}^{\mu\nu} a = g_{a\gamma\gamma} \vec{E} \cdot \vec{B} a
$$

✦ Magnetic field is "enabling mixing" between a VHE photon and an axion:

CTAO EST COLLABORATION

a

 γ \mathbb{X} B_0

Axion-like particles ✦ searches

Figure 1. ALPs parameters space, from: C. O'Hare, github.com/cajohare/AxionLimits

ivana.batkovic@unipd.it, ALPs searches with LST-1, RICAP September 2024

CTAC EST COLLABORATION

Axion-like particles ✦ searches

And many more...
ivana.batkovic@unipd.it, ALPs searches with LST-1, RICAP September 2024

CTAC EST COLLABORATION

Methodology ✦ signatures of ALPs

Irregularities Recovery of photons

CTAO ST COLLABORATION

Methodology ✦ signatures of ALPs

Irregularities Recovery of photons

CTAO ST COLLABORATION

Methodology ✦ wiggles

Figure 2. Photon survival probability vs. photon energy, obtained with gammaALPs

 \rightarrow Irregularities in the spectra of astrophysical objects due to the conversion of ALPs to photons in the external magnetic field ✦ Energy dependent

$$
E_{crit} = 2.5 \text{ GeV} \frac{\left|m_{a,\text{neV}}^2 - \omega_{pl,\text{neV}}^2\right|}{G_{11}B_{\mu G}}
$$

Methodology ✦ wiggles

Figure 2. Photon survival probability vs. photon energy, obtained with gammaALPs

 \rightarrow Irregularities in the spectra of astrophysical objects due to the conversion of ALPs to photons in the external magnetic field ✦ Energy dependent

$$
E_{crit} = 2.5 \text{ GeV} \frac{|m_{a,\text{neV}}^2 - \omega_{pl,\text{neV}}^2|}{G_{11}B_{\mu\text{G}}}
$$

CAN BE PROBED BY LST-1!

Methodology

- \rightarrow Mixing of the VHE photons causes irregularities
- https://gammaalps.readthedocs.io solves propagation of photon-ALP system and calculate

The First Large-Sized Telescope ✦ LST-1

CTAC EST COLLABORATION

The First Large-Sized Telescope ✦ LST-1

- ✦ Among other 3 telescopes, it is the first LST built on the CTAO North array in La Palma, Spain, operating since 2020.
- ✦ Optimized for observations of gamma-rays down to \sim 20 GeV, covering the lowest energy region by CTAO
- ✦ Since the start of operations, it dedicated over 1000 hours to observations of Active Galactic Nuclei (AGNs)
- ✦ Check the talk Daniel Morcuende gave on Wednesday: "The roadmap to CTAO AGN Science: Early results on AGNs of LST-1"

CTAC EST COLLABORATION

Study of ALPs with LST-1 ✦ dataset

- Targets of interest: blazars supermassive black holes in centers of galaxies – ultra-relativistic jet aligned with the line of sight
- ✦ LST-1 dataset:
	- ✦ **Mrk421 – 77.22 hrs**
	- ✦ **Mrk501 – 56.71 hrs**
	- ✦ **BL Lac – 50.00 hrs**
	- ✦ **1ES1959+650 – 16.272 hrs**

~ 200 hours of data

Study of ALPs with LST-1 ✦ spectral analysis

 \rightarrow Dividing the data from light curve into subsets of similar flux level $-$ Bayesian block analysis

ivana.batkovic@unipd.it, ALPs searches with LST-1, RICAP September 2024

CTAO EST COLLABORATION

CTAO SULABORATION Study of ALPs with LST-1 ✦ ALPs analysis

میشود می در استان می شود.
از سال می شود می شود می شود.
از سال می شود می شود می شود.

NU BU \overrightarrow{B}

SOURCE + JET $B \sim 1 G$ $L \sim 0.1$ pc

 $\frac{1}{2}$

SOURCE + JET $B \sim 1 G$ $L \sim 0.1$ pc

GALAXY CLUSTER

 \overrightarrow{B}

 $B \sim 1 \mu G$ \overline{L} ~ 10 kpc

SOURCE + JET $B \sim 1 G$ $L \sim 0.1$ pc GALAXY CLUSTER $B \sim 1 \mu G$ $L \sim 10$ kpc INTERGALACTIC MEDIUM $B < 1 nG$ $L \sim 1$ Mpc \overrightarrow{B} \overrightarrow{B} \overrightarrow{B} $\dot{\bm{B}}$

Study of ALPs with LST-1 \leftrightarrow ALPs analysis

SOURCE + JET $B \sim 1 G$ $L \sim 0.1$ pc

GALAXY CLUSTER $B \sim 1 \mu G$ $L \sim 10$ kpc

INTERGALACTIC MEDIUM $B < 1 nG$ $L \sim 1$ Mpc

MILKY WAY $B \sim 1 \mu G$ $L \sim 10 \text{ kpc}$

SOURCE + JET $R \sim 1 G$ $L \sim 0.1$ pc

✧ Helical and tangled jet magnetic field model as in [1] within the Synchrotron self-Compton modelling framework of Potter & Cotter [2] for each source individually

GALAXY CLUSTER $B \sim 1 \mu G$ $L \sim 10$ kpc

INTERGALACTIC MEDIUM $B < 1$ nG $L \sim 1$ Mpc

MILKY WAY $B \sim 1 \mu G$ $L \sim 10~{\rm kpc}$

SOURCE + JET $R \sim 1 G$ $L \sim 0.1$ pc

✧ Helical and tangled jet magnetic field model as in [1] within the Synchrotron self-Compton modelling framework of Potter & Cotter [2] for each source individually

SOURCE + JET $R \sim 1 G$ $L \sim 0.1$ pc

✧ Helical and tangled jet magnetic field model as in [1] within the Synchrotron self-Compton modelling framework of Potter & Cotter [2] for each source individually

GALAXY CLUSTER $B \sim 1 \mu G$ $L \sim 10$ kpc

- ✧ Negligible due to the much stronger field in the jet causing the mixing
- ✧ Not observed for the Transition Region, equipartition source under of jet plasma energy between magnetic field and particles scrutiny

 $L \sim 1$ Mpc \triangle Negligible mixing for the choice of

ALPs parameters and the source, EBL only

Slowly decelerating

conical jet

MILKY WAY $B \sim 1 \mu G$ $L \sim 10~{\rm kpc}$

CTAO EST COLLABORATION

ivana.batkovic@unipd.it, ALPs searches with LST-1, RICAP September 2024

Accelerating, I magnetically-II

dominated,

parabolic base

тL

пL

τt тL τL

SOURCE + JET $B \sim 1 G$ $L \sim 0.1$ pc

✧ Helical and tangled jet magnetic field model as in [1] within the Synchrotron self-Compton modelling framework of Potter & Cotter [2] for each source individually

GALAXY CLUSTER $B \sim 1 \mu G$ $L \sim 10$ kpc

- ✧ Negligible due to the much stronger field in the jet causing the mixing
- ✧ Not observed for the Transition Region, equipartition source under of jet plasma energy between magnetic field and particles scrutiny

 \triangle Negligible mixing for the choice of ALPs parameters and the source, EBL only

Slowly decelerating

conical jet

MILKY WAY $B \sim 1 \mu G$ $L \sim 10~{\rm kpc}$

CTAO EST COLLABORATION

✧ Modelled with a turbulent and regular component [3]

[1] Phys. Rev. D 103 (2021) [2] MNRAS, 453 (2015) [3] Astrophys. J. 757 (2012)

ivana.batkovic@unipd.it, ALPs searches with LST-1, RICAP September 2024

Accelerating, I magnetically-II

dominated,

parabolic base

тL

пL

τt тL \blacksquare

✦ Evaluating the hypotheses on the existence of ALPs – null hypothesis assumes no ALP effects present

$$
S(g_{a\gamma}, m_a) = -2 \ln \frac{\mathcal{L}(g_{a\gamma}, m_a, \hat{\mu}, \hat{B} | D)}{\hat{\mathcal{L}}}
$$
 TEST STATISTIC

$$
\mathcal{L}(m_a, g_{a\gamma}; \mu | D) = \prod_{i,k} \mathcal{L}_{i,k}, (m_a, g_{a\gamma}; \mu_i | D_{i,k})
$$
LIKELIHOOD

Data: ON and OFF counts ALPs mass and coupling – datasets $k - bins$ Nuisance parameters: spectrum fit

For computing the ALPs exclusions, we introduce point-by-point computation of the correct coverage using the MC simulations

ivana.batkovic@unipd.it, ALPs searches with LST-1, RICAP September 2024

 10^{-9} 10^{-8} 10^{-7} 10^{-6} m_a [eV]

CTAO EST COLLABORATION

ABRA

 10 cm

Mrk 421

Pulsars

SHAFT

 $10^{-12} +$
 10^{-9}

 10^{-11}

|gagg| [GeV

ICS

 $\overline{1}$

 10^{-10} $-$

CAST

Diffuse SN

Super star clusters

Iydra-A

M87

Study of ALPs with LST-1 \rightarrow data storage

- ✦ For each source, we save .ecsv files where we store the relevant information
- \rightarrow Providing the likelihood, test statistic (TS) values and sigma values
- ✦ Once available, different sources can be combined for ALPs exclusions

%ECSV 0.9

meta: !!omap

- # { Author: I. Batkovic }
- # { mail: ivana.batkovic@unipd.it }
- # { Date of file: 2024-16-05 }
- # { Source: Mrk421 }
- # { Source exposure: 82.8h }
- # { Source observation: 2020-13-12; 2024-12-02 }
- # { Instrument: LST1 }
- # { EBL model: Dominguez11 }
- # { B-field: JET (P&C) + EBL + MW (J&F12) }
- # schema: astropy-2.0

datatype:

- # {'name': 'm_a', 'unit': 'eV', 'datatype': 'float32', 'description': 'ALP mass'}
- # {'name': 'g_a\\gamma', 'unit': 'GeV', 'datatype': 'float32', 'description': 'ALP cross section'}
- # {'name': 'logL', 'unit': 'none', 'datatype': 'float32', 'description': 'log likelihood'}
- # {'name': 'TS', 'unit': 'none', 'datatype': 'float32', 'description': 'calibrated TS'}
- # {'name': 'z-score', 'unit': 'none', 'datatype': 'float32', 'description': 'z score'}

m_a ; g_a\gamma; logL ; TS ; z-score

| LST
| COLLABORATION

CTAO

Preliminary constraints

Preliminary constraints

ivana.batkovic@unipd.it, ALPs searches with LST-1, RICAP September 2024 **18** Figure 5.Preliminary constraints on the ALPs parameter space, obtained with LST-1 data of M421, Mrk501 and 1ES1959+650

Conclusions and future prospects

- ✦ Obtain complete constraints from the entire dataset
- ✦ Compute the CDF based on simulations and adjust the constraints
- ✦ Assess the systematical uncertainities, as well as statistical ones, especially those coming from the choice of magnetic fields configuration and spectral modelling
- ✦ Obtain the final, combined exclusion region in the ALPs parameter space
- ✦ Build a database containing .ecsv files with TS for all promising sources

✦ Addition of LST 2-4: lower energy threshold – better data reconstruction, more accurate spectrum estimation \rightarrow more accurate (possibly stronger?) constraints

Thank you for your attention

Ivana Batković, University of Padova ivana.batkovic@unipd.it

Methodology

✦ Recovery of photons ✧ Due to the backconversion in the Galactic magnetic field, ✧ Occurring on energies above several TeVs

Figure 6. Photon survival probability vs. photon energy, obtained with gammaALPs

✦ Recovery of photons ✧ Due to the backconversion in the Galactic magnetic field, ✧ Occurring on energies above several TeVs

Figure 6. Photon survival probability vs. photon energy, obtained with gammaALPs

obtained with gammaALPs

CTAO EST COLLABORATION Study of ALPs with LST-1 \leftrightarrow ALPs analysis

Figure 7. Photon survival probability vs. photon energy, obtained with gammaALPs

Backup slides

CTAO EST COLLABORATION

Transition region. Jet transitions from parabolic to conical. Plasma first comes into equipartition and magnetic acceleration ceases to be efficient. Dominates optically thin synchrotron and SSC emission.

Important for the gammALPs:

- Jet geometry is linearly scaled from the observations of M87 using the eff. BH mass
- Transition region is consequently defined to occur at $10^5 r_T$
- At the same time, r_T (distance of the transition region from the BH), can be calcluated from the formula for the gravitational radius:

 $r_T =$ $2MG$ c^2

✦ Parameters for the modelling of the jet magnetic field

*taken from Tavecchio et al. , MNRAS. **401,** 1570–1586 (2010)

Backup slides - TS

Backup slides

CTAO EST COLLABORATION

CDF distribution of the simulations of the most conservative ALP point (highest 95th quantile) for one Mrk 421 subset