

Study of Dark Matter with directionality approach using ZnWO⁴ crystal scintillators

September 23rd – 27th , 2024 – Frascati, Roma, Hotel Villa Tuscolana

A. Leoncini ^{1,2}, L.A. Afanasieva³, P. Belli^{1,2}, R. Bernabei^{1,2}, Yu.A. Borovlev^{4,5}, F. Cappella^{6,7}, V. Caracciolo^{1,2}, R. Cerulli^{1,2}, N. Cherubini⁹, F.A. Danevich^{2,3}, V. Ya. Degoda⁸, A. Incicchitti ^{6,7}, D. V. Kasperovych³, Ya. P. Kogut⁸, V. Merlo^{1,2}, G.P. Podust⁸, O.G. Polischuk ^{3,6}, A. G. Postupaeva⁵, V. N. Shlegel⁴ and V. I. Tretyak^{3,10}

- ¹ Dipartimento di Fisica, Università di Roma 'Tor Vergata', I-00133 Rome, Italy
- 2 INFN Sezione di Roma Tor Vergata, I-00133 Rome, Italy
- 3 Institute for Nuclear Research of NASU, 03028 Kyiv, Ukraine
- ⁴Nikolaev Institute of Inorganic Chemistry, 630090 Novosibirsk, Russia
- ⁵ CML Ltd, 630090 Novosibirsk, Russia
- 6 INFN Sezione Roma, I-00185 Rome, Italy
- ⁷ Dipartimento di Fisica, Università di Roma 'La Sapienza', I-00185 Rome, Italy
- ⁸ Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
- ⁹ENEA, Italian National Agency for New Technologies, Energy and Sustainable EconomicDevelopment, C.R. Casaccia, 00123, Rome, Italy
- ¹⁰ INFN Laboratori Nazionali del Gran Sasso, 67100 Assergi (AQ), Italy

Signatures for direct detection experiments

In direct detection experiments to provide a Dark Matter signal identification with respect to the background, a model independent signature is needed.

• **Model independent annual modulation**: annual variation of the interaction rate due to Earth motion around the Sun which is moving in the Galaxy

> at present the only feasible one, sensitive to many DM candidates and scenarios (successfully exploited by DAMA)

• **Model independent diurnal modulation**: due to the Earth revolution around its axis

2nd order effect

• **Diurnal variation**: daily variation of the interaction rate due to the different Earth depth crossed by the Dark Matter particles

only for high **cross sections**

• **Directionality**: correlation of Dark Matter impinging direction with Earth's galactic motion

only for DM candidate particle inducing recoils 2011 2012

The directionality approach

Based on the study of the correlation between the arrival direction of DM candidates able to induce a nuclear recoil and the Earth motion in the galactic frame.

- ➢ Impinging direction of DM particle is (preferentially) opposite to the velocity of the Sun in the Galaxy.
- \triangleright Due to the Earth's rotation around its axis, the DM particles average direction with respect to an observer on the Earth changes with a period of a sidereal day.
- \triangleright The direction of the induced nuclear recoil is strongly correlated with that of the impinging DM particle.
- \triangleright The observation of an anisotropy in the distribution of nuclear recoil direction could give evidence for such DM candidates.

A direction-sensitive detector is needed

Directionality techniques (R&D stage and ideas)

Tracking Detectors:

- LP-TPC (DRIFT, NIMAC, DMTTPC, NEWAGE, D3, NITEC, CYGNUS, INITIUM)
- Nuclear Emulsions (NEWSdm)
- Ideas: DNA, diamonds

Detectors using Anisotropic Features:

- Anisotropic crystal scintillators (ADAMO)
- Carbon nanotubes based detectors (PTOLEMY)
- Columnar Recombination in LAr/LXe-TPC (RED)

In order to reach a significant sensitivity, a realistic detector experiment needs e.g.:

- **extreme operational stability**
- high radio-purity
- **high mass**
- great spatial resolution (for tracks' detection)
- low energy threshold
- …

The DRIFT-lid detector in the Boulby Mine The detector volunie is divided by the central cathode, each half has its

4

Anisotropic scintillators: ZnWO⁴

- For **heavy particles** (p , α , nuclear recoils), the light output and the pulse shape depends on the particle impinging direction with respect to the crystal axes;
- For y/e , the light output and the pulse shape are isotropic.

Lawo.

Cimillan 2011

matterie of Scientification

Advantages in the use of ZnWO⁴ crystal scintillators:

- Very good anisotropic features;
- High level of radio-purity;
- High light output, that is low energy threshold feasible;
- High stability in the running conditions;
- Sensitivity to small and large mass DM candidate particles;
- Detectors with ∼ kg masses;

Measurements of ZnWO₄ anisotropic response **to nuclear recoils for the ADAMO project**

In the framework of the ADAMO project, recent measurements were performed in order to verify the anisotropic response of a $ZnWO_A$ crystal scintillator to:

- **1. a** particles : a small ZnWO₄ crystal $(10 \times 10 \times 10 \text{ mm}^3)$, with mass of 7.99 g), irradiated by a collimated beam of α particles from an ²⁴¹Am source in the directions along the crystal axes I, II and III.
- **2. Oxygen nuclear recoils**: neutron beam of 14 MeV produced by a neutron generator at ENEA-Casaccia.

 $ZnWO₄$ crystal = 10 x 10 x 10 mm³ (detector of reduced dimensions to investigate neutron singlescattering)

P. Belli et al. Eur. Phys. J. A 56 (2020) 83

Studying the response of the ZnWO⁴ with

241 Am α source

Calibration set-up:

- PMT Hamamatsu H11934-200 (transit time \approx 5 ns) + ZnWO₄
- LeCroy Oscilloscope 24Xs-A, 2.5 Gs/s, 200MHz bandwidth
- Pulse profiles acquired in a time window of 100 μ s
- \triangleright Crystal irradiated at the same time with γ (²²Na) and α (²⁴¹Am) sources along the three crystal axes.
- Different α energies obtained with Mylar foils and measured with Si detector.
- \triangleright Very efficient PSD capability to discriminate α and γ .

P. Belli et al. Eur. Phys. J. A 56 (2020) 83

Studying the response of the ZnWO⁴ with a neutron gun

- **Strategy:** search for coincidence between a scattered neutron at a fixed angle and scintillation event in ZnWO_4 occurred in a well-defined time window (TOF).
- Once fixed the θ angle, the recoil direction and energy are fixed.
- Measurements performed at different θ angles.

P. Belli et al. NIMA1029(2022)166400

Optical and scintillation properties of advanced ZnWO₄ crystal scintillators

Table 1

Developed by using the **low-thermal gradient Czochralski technique:**

- variation of the compound stoichiometry,
- **using** of initial **WO³** of **different producers** and **additionally purified**,
- utilization of **single** and **double crystallization with** and **without annealing** of the grown boules.

The samples of ZnWO, crystals used in the present study and the boules of origin.

nsmission $(\%)$ The **transmission** spectra **agree** with the **literature** data. However, the transmission varies substantially **depending** on the sample **production protocol**. In particular, the samples produced by double crystallization (samples 75, 76) are definitely of worse optical quality

Optical transmission

9

Optical and scintillation properties of advanced ZnWO₄ crystal scintillators

Luminescence under X-ray excitation and scintillation properties

2000

 207 Bi, 1064

1500

 $R = 6.7\%$

Optical and scintillation properties of advanced ZnWO₄ crystal scintillators

Example of expected signal

- It is very convenient to consider an experiment performed at the LNGS latitude (**42°27'N**):
- ❖ DM particles come mainly from the top at 21.00 h LST
- ◆ 12 h later they come from the North and parallel to the horizontal plane
- If we arrange the $ZnWO₄$ crystal axis so that:
- \triangleright The one with the largest light output is vertical and
- \triangleright the one with the smallest light output points north

⇒ We obtain the maximum range of variability of the anisotropic detector response during a sidereal day

Absolute maximum rate is at day 152 and at 21h LST (when the DM flux is at maximum and the DM preferential arrival direction is near the zenith)

The ADAMO project: example of reachable sensitivity in a given scenario

Assumptions:

- simplified model framework
- 200 kg of $ZnWO₄$
- 5 years of data taking
- 2 keVee threshold
- four possible time independent background levels in the low energy region:
	- $\geq 10^{-4}$ cpd/kg/keV
	- $\geq 10^{-3}$ cpd/kg/keV
	- $\geq 10^{-2}$ cpd/kg/keV
	- ≥ 0.1 cpd/kg/keV

- \triangleright The directionality approach can reach in the given scenario a sensitivity to the cross section at level of 10⁻⁵ 10⁻⁷ pb, depending on the particle mass.
- \triangleright Allowed regions (green, red, blue) obtained with a corollary analysis of the 9.3 σ C.L. DAMA model independent result in terms of scenarios for the DM candidates considered here.

ZnWO⁴ – work in progress…

- ❖ A cryostat for low temperature measurement with scintillation detectors has been realized.
- ❖ Test of the cryostat.
- ❖ Lowering the energy threshold (new PMT with higher QE optimized to the fluorescence light emission and temperature operation).

- ❖ New measurements of anisotropy at low energy with MP320 Neutron Generator $(E_n = 14$ MeV) at ENEA-Casaccia are planned.
- ❖ Further improvement of the radio-purity.

Conclusions

- **Directionality Dark Matter experiments** could obtain further evidence for the presence of **DM candidates inducing nuclear recoils** in the galactic halo and/or provide complementary information on the nature and interaction type of DM particle candidates.
- Several TPC-based detectors are in the R&D stage. Other potential ideas have shortly been listed.
- **The anisotropic ZnWO⁴ detectors** are promising to investigate the directionality for DM candidates inducing nuclear recoils.
- **First evidence of anisotropy in the response of ZnWO⁴ crystal scintillator to low energy nuclear recoils reported**.
- The data presented here confirm the anisotropic response of the $ZnWO₄$ crystal scintillator to α particles in the MeV energy region.
- The anisotropy is significantly evident also for oxygen nuclear recoils in the energy region down to some hundreds keV at **5.4 σ** confidence level.

Thanks for attention!

BACKUP SLIDES

How can we profit of the anisotropic scintillator features?

As a consequence of the *anisotropy light response for heavy particles*, recoil nuclei induced by the considered DM candidates could be discriminated from the background thanks to the expected variation of their low energy distribution along the day.

NB: **Many quantities are model dependent,** and a model framework has to be fixed: in this example, for simplicity, a set of assumptions and of values have been fixed, **without considering** the effect of the existing **uncertainties** on each one of them and without considering other possible alternatives.

… the model framework considered here

- a **simple spherical isothermal** DM halo model with **Maxwellian** velocity distribution, 220 km/s local velocity, 0.3 GeV/cm³ **local density** (*⁰*) and 650 km/s escape velocity;
- DM with dominant **spin-independent coupling** and the following **scaling law** (DM-nucleus elastic cross section, $\sigma_{\sf n}$, in terms of the DM elastic cross section on a nucleon, $\sigma_{\sf p}$):

$$
\sigma_n = \sigma_p \left(\frac{M_n^{red}}{M_p^{red}} \cdot A \right)^2 = \sigma_p \left(\frac{m_p + m_{DM}}{m_n + m_{DM}} \cdot \frac{m_n}{m_p} \cdot A \right)^2
$$

• a simple exponential **form factor**:

$$
F_n^2(E_n) = e^{-\frac{E_n}{E_0}} \qquad E_0 = \frac{3(\hbar c)^2}{2m_n r_o^2} \qquad r_0 = 0.3 + 0.91 \sqrt[3]{m_n}
$$

Quenching factor adopted in the following example:

 $q_n(\Omega_{out}) = q_{n,x} \sin^2 \gamma \cos^2 \phi + q_{n,y} \sin^2 \gamma \sin^2 \phi + q_{n,z} \cos^2 \gamma$

where *qn,i* **is the quenching factor value for a given nucleus**, *n*, with respect to the *i-***th axis** of the anisotropic crystal and $\Omega_{out} = (\gamma, \phi)$ is the output direction of the nuclear recoil in the laboratory frame *qn,i* have been calculated following ref. [V.I. Tretyak, Astropart. Phys. 33 (2010) 40] considering the data of the anisotropy to α particles of the $ZnWO₄$ crystal.

Energy resolution: $FWHM = 2.4 \sqrt{E (keV)}$