Results and Prospects of LHAASO Cosmic Ray Composition and Energy Spectra Measurement

Shoushan Zhang

on behalf of the LHAASO collaboration

Institute of High Energy Physics, CAS, China

The 9th Roma International Conference on Astro-Particle Physics (RICAP-2024) 23 - 27 September., 2024 Roma, Italy

Outline

□ Introduction

CR Spectra around the Knees

- Pure Protons
- Light Component (H + He)
- All Particle Spectrum and Composition
- □ Summary & Outlook

Cosmic rays

- Proton, helium nuclei and heavier nuclei, all the way to uranium
- Discovered in 1912, many things (e.g. source, acceleration mechanism) about cosmic rays remain a mystery more than a century later
- Individual energy spectra play am important role to solve the mystery
 - Proton knee, helium knee, iron knee ...
 - The knee indicates the energy limit for cosmic ray acceleration by astrophysical sources.

Large High Altitude Air Shower Observatory (LHAASO)

~25,000 m

CATCHING RAYS

China's new observatory will intercept ultra-high-energy γ-ray particles and cosmic rays.

LHAASO Physics Topics

- Gamma Ray Astronomy
- Charged CRs measurement
- New Physics Frontier

NORTH

WCDA

WFCTA

Hybrid Detection of EAS

Experiment	depth	Detector	$\Delta E (eV)$	e.m. Sensitive	Instrumented	Coverage
	g/cm^2			Area (m^2)	Area (m^2)	
ARGO-YBJ	606	RPC/hybrid	$3 \times 10^{11} - 10^{16}$	6700	11,000	0.93
						(central carpet)
BASJE-MAS	550	scint./muon	$6 \cdot 10^{12} - 3.5 \cdot 10^{16}$		104	
TIBET AS γ	606	scint./burst det.	$5{\times}10^{13}{-}10^{17}$	380	$3.7{ imes}10^4$	10^{-2}
CASA-MIA	860	scint./muon	$10^{14} - 3.5 \cdot 10^{16}$	1.6×10^{3}	2.3×10^{5}	7×10^{-3}
KASCADE	1020	scint./mu/had	$10^{15} - 10^{17}$	5×10^{2}	4×10^{4}	
KASCADE	1020	scint./mu/had	$10^{16} - 10^{18}$	370	5×10^{5}	7×10^{-4}
-Grande						
Tunka	900	open Cher.det.	$3 \cdot 10^{15} - 3 \cdot 10^{18}$	-	106	-
IceTop	680	ice Cher.det.	$10^{15} - 10^{18}$	4.2×10^{2}	10^{6}	4×10^{-4}
LHAASO	600	Water C	$3{\times}10^{11}{-}10^{18}$	5.2×10^{3}	1.3×10^{6}	4×10^{-3}
		$\rm scint./mu/had$				[KM2A]
		Wide FoV Cher.Tel				

Table 1. LHAASO vs other EAS arrays

Muon detectors

Experiment	m asl	μ Sensitive Area $[{\rm m}^2]$	Instrumented Area $[m^2]$	Coverage	
LHAASO	4410	4.2×10^{4}	10^{6}	4.4×10^{-2}	
TIBET $AS\gamma$	4300	4.5×10^{3}	$3.7{ imes}10^{4}$	1.2×10^{-1}	
KASCADE	110	$6{ imes}10^2$	$4{ imes}10^4$	1.5×10^{-2}	
CASA-MIA	1450	$2.5 imes 10^3$	2.3×10^{5}	1.1×10^{-2}	

The Site

Bird's eye view of LHAASO, 2021-08

- Location: 29o21'27.6" N, 100o08'19.6" E
- Altitude: 4410 m
- 2021-07 completed built and in operation

(Aug. 2018, at 4410 m a.s.l.)

LHAASO: Multi-Messenger Collaboration Network

The LHAASO collaboration has signed MOUs with 8 international detector collaboration.

¹ Zhang^{*}, ^{1,1} Yong Zhang^{*,1,2} B. Zhao^{*}, ⁹ J. Zhao^{*,1,2} L. Zhao^{*,4} L.Z. Zhao^{*}, ^{1,3} S.P. Zhao^{*}, ^{1,3} F. Zheng^{*,4} Y. Zheng^{*}, ⁹ L.Zhu^{*}, ¹⁰ L.Z. Zhao^{*,4} S.P. Zhao^{*}, ^{1,3} F. Zheng^{*,4} Y. Zheng^{*,4} B. Zhou^{*,4} H. Zhu^{*,4} F. Zhu^{*,4} F. Zhu^{*,4} H. Zhu^{*,1,5} and X. Zuo^{1,3}

Operation of LHAASO

- KM2A is operated with >99.4% duty cycle and event rate 2x10⁸/day
- **WCDA** is operated with 98.4% and event rate 3x10⁹/day
- Data acquisition time of WFCTA > 1400 hrs and number of matched events ~70 million

- Pure Protons
- Light Component (H + He)
- All Particle Spectrum and Composition

Xmax Measurement by WFCTA

高海拔宇宙後観测站

$$P_{\mu e} = \log_{10} \frac{\rho_{\mu}}{\rho_e^{0.83}}$$

 ρ_{μ} : muon density in the ring between 40m and 200m from the core ρ_{e} : EM – particle density in the ring between 40m and 200m

Proton Energy Reconstruction

Tests using generated samples

Ratio of proton vs Helium nuclei Re-produced pure-proton spectra under 4 assumption of composition mixtures in composition assumptions 10^{4} F_H / F_{He} Flux dN/dE*E^{2.65} (m⁻² sr⁻¹ s⁻¹ GeV^{1.65}) Gaisser 1.8 Horandel GSF 1.6 BXJ 1.4 1.2 $E_{C\mu}$, 25%Eff, GSF ê 📮 🖵 🗖 E_{Cu}, 25%Eff, Gaisser 10^{3} ♣ □ E_{Cu}, 25%Eff, Horandel 0.8 E_{Cu}, 25%Eff, BXJ 0.6 (Flux_--Flux_{Model})/Flux_____×100 (%) 20 GSF - Mode Gaisser - Model 0.4 15 Horandel - Model a factor of 1.5 BXJ - Model 0.00 0.2 10 0 5 5.5 5 6 6.5 7.5 log10(E/GeV) 0 Gaisser Model: Gaisser, T.K., Stanev, T. & Tilav, S. Front. Phys. 8, 748 - 758 (2013) -5 Horandel Model: Horandel J R. Astroparticle Physics, 2003, 19(2):193 - 220 -10 10⁶ 10^{7} E/GeV GSF Model: H. P. Dembinski, R. Engel, A. Fedynitch, T. Gaisser, F. Riehn, and T. Stanev, PoS ICRC2017, 533 (2018) BXJ Model: Lv X.-J., Bi X.-J., Fang K., et al., arXiv:2403.11832. (2024) 16

Light component (H+He) → Helium Spectrum

Different composition models test

- > The P to He ratio after composition selection is almost the same as before
 - The variation of the P/He ratio is within $\pm 3\%$ after composition selection
- ➤ Light component (H+He) Spectrum Proton Spectrum → Helium Spectrum

All-particle energy spectrum & composition by LHAASO

Energy reconstruction

- > Energy reconstruction independent of the primary CR component
- > Scintillator detector array (ED) : Electromagnetic component (N_e) > Muon detector array (MD) : hadron component $\pi^{\pm} \rightarrow \mu$ (N_{μ})

 $E_0 = E_e + E_h \approx N_e^{max} \times E_c^e + aN_\mu \times E_c^\pi$ J. Matthews, Astropart. Phys. 22, 387 (2005)

$$N_{e\mu} = N_e + aN_{\mu}$$
 $E_{rec} = b \times N_{e\mu}$

PHYSICAL REVIEW D 106, 123028 (2022)

- Bump: ~13.6 TeV for Proton and ~34.4 TeV for Helium
- Charge Z dependent?
 - The ratio of Proton bump and Helium bump is 2.5 ± 0.8
- Iron spectra from 100 TeV to several PeVs will be measured by LHAASO and can answer the question clearly.

Summary & Outlook

- Measuring CR Spectra of Individual Species around knees is a big step towards understanding the knee feature
 - The spectra of proton, helium and proton+helium around knees are planned to be submitted to the journal this year
- All particles energy spectrum from 300 TeV to 30 PeV has been measured by LHAASO-KM2A with high accuracy, revealing a clear correlation between the flux and the composition at the knee
- The iron spectrum around 400 TeV will be finished next year
- And iron spectrum around the knee is the goal in 3 years.

LHAASO a complex for both γ-astronomy

and Cosmic Ray research

The ½ array started operation in 2019 and the full array in 2021

KM2A: 1.36 (km)²

- ≻ 5195 EDs
 - 1 m² each
 - 15 m spacing
- ➢ 1188 MDs
 - 36 m² each
 - 30 m spacing

Inner View of one ED

LHAASO-KM2A Selection of γ -rays out of CR background

Wide Field of View Cherenkov Telescope (WFCTA)

Telescope parameters:

- ~5 m² spherical mirror
- Camera: 32×32 SiPMs array
- FOV: $16^{\circ} \times 16^{\circ}$
- Pixel size: 0.5°

Mirror

SiPM camera

SiPM and Winstone cone