

The physical properties of candidate neutrino-emitter blazars

Alessandra Azzollini*

On behalf of: Sara Buson, Alexis Coleiro, Gaëtan Fichet de Clairfontaine, Leonard Pfeiffer, Jose Maria Sanchez Zaballa, Margot Boughelilba, Massimiliano Lincetto

September 26th, 2024 - Frascati 9th edition of the Roma International Conference on AstroParticle Physics (RICAP 2024) *alessandra.azzollini@uni-wuerzburg.de

The puzzle of high-energy neutrinos

Nearly massless Very challenging to detect Indirect probes of cosmic rays

IceCube Collaboration (2022)

Yet to be unveiled: Which astrophysical **sources** produce them Which **processes** originate them

The connection between blazars and neutrinos: further clues

Positional cross-correlation analysis

Blazar sample

5th Edition of Roma-5BZCat catalog

• no preferred selection

Massaro et al. (2015)

See Sara Buson's talk tomorrow!

IceCube neutrino data

The 'highest-quality' data for point-source searches publicly available

Northern hemisphere

- 10-year sky map
- 2011 2020
 - IceCube coll. (2022)

Southern hemisphere

IceCube coll. (2017)

• 7-year sky map

• 2008 - 2015

The connection between blazars and neutrinos: further clues

The candidate "PeVatron blazars" sample

 $10 \text{ southern} \\ -85^\circ < \delta < -5^\circ$

42 northern $-3^{\circ} \le \delta \le 81^{\circ}$

Buson et al. (2022a, 2022b) Buson et al. (2023) See also Bellenghi et al. (2023)

Diving into the properties of the sample

Do the 52 candidate neutrino-emitter blazars share similar chacteristics? How do they behave compared to the overall population of blazars?

Active Galactic Nuclei (AGN): the unified model

Accretion onto a supermassive black hole $M \sim 10^6 - 10^9 M_{\odot}$ Very **powerful** objects $L_{bol} \sim 10^{46} - 10^{48} \, \mathrm{erg} \cdot \mathrm{s}^{-1}$ Emission up to ~ Mpc scales Rapid variability ~ min - yr

Observed **boosted** emission from the jet spans the whole electromagnetic spectrum:

- Infrared (IR) obscuring material, dust
- <u>Optical/Ultraviolet (UV)</u> accretion disc
- <u>X-rays (XRs)</u> corona
- <u>Radio</u>, <u>γ-rays</u> non-thermal jet related radiation

Active Galactic Nuclei (AGN): the unified model

Historical classification of radio-loud blazars

Flat spectrum radio quasars (FSRQs)

- Prominent emission lines in the optical spectrum
- Highly beamed jets closely aligned with line of sight - Less beamed jets more closely aligned with line of sight
- High radio luminosities
- High redshifts
- *High* accretion efficiency ("cold-mode")
- Less massive black holes

BL Lacertae objects (BL Lacs)

- Weak or absent emission lines in the optical spectrum

- Low radio luminosities
- Low redshifts
- Low accretion efficiency ("hot-mode")
- More massive black holes
- Best & Heckman (2014)

The transitional blazars and the need for a new nomenclature

Blue FSRQs (masquerading BL Lacs)

Ambiguous properties between the two classes High synchrotron peak, featureless optical spectrum Intrinsically FSRQs with optical lines swamped by jet's emission

TXS 0506+056 (5BZB J0509+0541) **PKS 1424+240** (5BZB J1427+2348) 5BZB J0630-2406

> Ghisellini et al. (2012) Padovani et al. (2012, 2019, 2022) Fichet de Clairfontaine et al. (2023)

Probing the accretion properties

Through optical spectroscopy

Emission lines from the **BLR**: Hα, Hβ, Mg II, C IV Detections or upper limits

- Luminosity of the BLR
- Luminosity of the accretion disk
- Bolometric luminosity
- Mass of the central black hole
- Eddington luminosity
- Radii of the BLR and DT

Why the accretion regime?

In lepto-hadronic frameworks: tight relation between neutrino production properties and radiation fields

Dermer et al. (2014)

A physically-driven classification

"Radiative-mode" AGN High-excitation radio galaxies (HERGs)

Radiatively **efficient** accretion: $L_{\rm BLR}/L_{\rm Edd} \gtrsim 5 \times 10^{-4}$ $L_{\gamma}/L_{\rm Edd} \gtrsim 0.1$

High radio power: $P_{1.4\,\rm GHz} \gtrsim 10^{26}\,\rm W\cdot Hz^{-1}$

Best & Heckman (2014); Giommi et al. (2012); Padovani et al. (2022); Ghisellini et al. (2011)

"Jet-mode" AGN Low-excitation radio galaxies (LERGs)

Radiatively inefficient accretion: $L_{\rm BLR}/L_{\rm Edd} \lesssim 5 \times 10^{-4}$ $L_{\gamma}/L_{\rm Edd} \lesssim 0.1$

Low radio power: $P_{1.4\,\rm GHz} \lesssim 10^{26}\,\rm W\cdot Hz^{-1}$

A physically-driven classification

Sbarrato et al. (2014) Ghisellini et al. (2014)

Results: the accretion regime

 $L_{\rm BLR}/L_{\rm Edd}$ vs $L_{\gamma}/L_{\rm Edd}$

• Mild tendency towards intense radiation fields and radiatively efficient accretion:

~60% HERG-like

• 50% with Fermi-LAT detection:

 $L_{\gamma} \in [1.43 \times 10^{42}, 1.21 \times 10^{48}] \,\mathrm{erg} \cdot \mathrm{s}^{-1}$

• **Compatible** with overall population of blazars (Anderson-Darling statistical test)

Azzollini et al., submitted

Results: the accretion regime

 $L_{\rm BLR}/L_{\rm Edd}$ vs $L_{\gamma}/L_{\rm Edd}$

• Mild tendency towards intense radiation fields and radiatively efficient accretion:

~60% HERG-like

• 50% with Fermi-LAT detection:

 $L_{\gamma} \in [1.43 \times 10^{42}, 1.21 \times 10^{48}] \,\mathrm{erg} \cdot \mathrm{s}^{-1}$

• **Compatible** with overall population of blazars (Anderson-Darling statistical test)

Azzollini et al., submitted

Results: the radio power

 $L_{\rm BLR}/L_{\rm Edd}$ vs. $P_{1.4\,\rm GHz}$

• Mild tendency towards powerful jets and high radio power:

~60% HERG-like

 Compatible with overall population of blazars (Anderson-Darling statistical test)

Azzollini et al., submitted

Results: the radio power

 $L_{\rm BLR}/L_{\rm Edd}$ vs. $P_{1.4\,\rm GHz}$

• Mild tendency towards powerful jets and high radio power:

~60% HERG-like

 Compatible with overall population of blazars (Anderson-Darling statistical test)

Azzollini et al., submitted

Results: other properties

Azzollini et al., submitted

Summary

- A subsample of blazars proposed as associated with IceCube neutrino hotspots.
- Multi-wavelength analysis:
 - Proprietary and archival data.
 - Optical spectroscopy: key tool to study the intrinsic physical properties.
 - Mild tendency toward radiatively efficient accretion, strong external radiation fields and powerful relativistic jets (HERGs).
 - Compatible with the overall population of blazars.
- No definitive conclusions can be drawn from the full candidates sample.
 - Forthcoming dedicated studies tackling the genuineness of the associations.

Summary

- A subsample of blazars proposed as associated with IceCube neutrino hotspots.
- Multi-wavelength analysis:
 - Proprietary and archival data.
 - Optical spectroscopy: key tool to study the intrinsic physical properties.
 - Mild tendency toward radiatively efficient accretion, strong external radiation fields and powerful relativistic jets (HERGs).
 - Compatible with the overall population of blazars.
- No definitive conclusions can be drawn from the full candidates sample.
 - Forthcoming dedicated studies tackling the genuineness of the associations.

Backup slides

Blazar properties: the spectral energy distribution (SED)

Double-humped shape

First peak Low energy (IR - XRs) *Synchrotron* radiation

Second peak

High energy (hard XRs - **y**-rays) Inverse Compton radiation

Lepto-hadronic/ Hadronic scenario

Hadrons contribution to the MWL SED

Neutrinos

The production of neutrinos in blazars

p-**y** interaction

 $p + \gamma \to \begin{cases} n + \pi^+ \\ p + \pi^0 \end{cases}$

Blazars' relativistic jets are able to accelerate electrons and hadrons

Mannheim (1993) Böttcher et al. (2013) Dermer et al. (2014)

The physical properties estimation

$$z \implies d \implies L_{\text{line}} = 4 \cdot \pi \cdot d^2 \cdot F_{\text{line}}$$
$$L_{\text{BLR}} = L_{\text{line}} \cdot \frac{\langle L_{\text{BLR}} \rangle}{L_{\text{rel. frac.}}} \sim 10 \% L_{\text{disk}}$$
$$L_{\text{rel.frac.}} = \begin{cases} 77 \text{ for } \text{H}\alpha, \\ 22 \text{ for } \text{H}\beta, \\ 34 \text{ for } \text{Mg I} \\ 63 \text{ for } \text{C IV} \end{cases}$$
$$r_{\text{BLR}} = 10^{17} \cdot \left(\frac{L_{\text{disk}}}{10^{45} \text{ erg} \cdot \text{s}^{-1}}\right)^{1/2} \text{ cm}$$

Francis et al. (1991; Celotti et al. (1997; Sbarrato et al. (2012) Ghisellini et al. (2014); Shen et al. (2011) McLure & Dunlop (2004); Vestergaard & Osmer (2009); Ghisellini & Tavecchio (2008); Ghisellini et al. (2017)

$$\log\left(\frac{M_{\rm BH}}{M_{\odot}}\right) = a + b \cdot \log\left(\frac{\lambda \cdot L}{10^{44} \, {\rm erg} \cdot {\rm s}^{-1}}\right) + c \cdot \log\left(\frac{{\rm FWHM}}{{\rm km} \cdot {\rm s}^{-1}}\right)$$
$$\left(a, b, c\right) = \begin{cases} (0.379, 0.43, 2.1) & \text{for } {\rm H}\alpha, \\ (0.672, 0.61, 2.0) & \text{for } {\rm H}\beta, \\ (0.740, 0.62, 2.0) & \text{for } {\rm Mg \, II} \\ (0.660, 0.53, 2.0) & \text{for } {\rm C \, IV} \end{cases}$$

$$L_{\rm Edd} = 3 \times 10^4 \cdot \left(\frac{M}{M_{\odot}}\right) \cdot L_{\odot}$$
$$r_{\rm DT} = 2 \times 10^{18} \cdot \left(\frac{L_{\rm disk}}{10^{45} \, {\rm erg} \cdot {\rm s}^{-1}}\right)^{1/2} \, {\rm cm}$$

Upper limits on the not-detected lines

Power-law fit of *continuum* in range 500 Å around expected line position

Line as additional Gaussian with $v_{\rm FWHM} = 4000 \, {\rm km \cdot s^{-1}}$ and variable $F_{\rm line}$

Accept F_{line} when $\chi^2 < \chi^2 (99\%)$

Sbarrato et al. (2012) Azzollini et al., submitted

Probing the intrinsic power of the relativistic jet

Complementary information at radio and γ -rays

Radio power at 1.4 GHz

NVSS, FIRST catalogs HERG/LERG dividing value: $P_{1.4\,{\rm GHz}} \sim 10^{26}\,{\rm W}\cdot{\rm Hz}^{-1}$

Best & Heckman (2014)

γ-ray luminosity

Fermi-LAT 4LAC-DR3 catalog HERG/LERG dividing value:

 $L_{\gamma}/L_{\rm Edd} \sim 0.1$

The comparison samples

S12

Blazars with SDSS-DR7 spectrum and 1LAC counterpart; BL Lacs from Plotkin et al. (2011) with no Fermi-LAT detection; intermediate objects between FSRQs/BL Lacs with 1LAC counterpart

Measurements + upper limits in both optical, γ-rays

Blazars from CGRaBS with counterpart in a Fermi catalog up to 3FGL

physical properties: 54 sources via optical

Several methods to derive spectroscopy (emission lines)

Only measurements in optical, measurements + upper limits in **y**-rays

Sbarrato et al. (2012)

P17

y-loud, y-quiet

Paliya et al. (2017)

P21

Blazars from 4FGL-DR3 with SDSS-DR16

counterpart

Only measurements in γ-rays, measurements + upper limits in optical

Paliya et al. (2021)

The results of the Anderson-Darling test

	<u>(</u>		1
Quantity	Compared samples	# sources	pvalue
$L_{\rm BLR}/L_{\rm Edd}$	Our sample vs. P21	32 vs. 664	$< 10^{-3} (> 3.29\sigma)$
	Our sample vs. P17	32 vs. 54	$0.14(1.48\sigma)$
	Our sample vs. S12	32 vs. 79	$0.25(1.15\sigma)$
$L_{\gamma} \left[\text{erg} \cdot \text{s}^{-1} \right]$	our sample vs. P21	26 vs. 1006	0.25 (1.15 <i>σ</i>)
	our sample vs. P17	26 vs. 314	$< 10^{-3} (> 3.29\sigma)$
	our sample vs. S12	26 vs. 101	$0.07(1.78\sigma)$
	our sample vs. BZCat	26 vs. 1137	$0.17(1.36\sigma)$
	our sample vs. 4LAC-DR3	26 vs. 1872	$0.25(1.15\sigma)$
$P_{1.4 \mathrm{GHz}} \left[\mathrm{W} \cdot \mathrm{Hz}^{-1}\right]$	our sample vs. P21	52 vs. 966	$0.09 (1.69\sigma)$
	our sample vs. P17	52 vs. 468	$0.02(2.23\sigma)$
	our sample vs. S12	52 vs. 126	$< 10^{-3} (> 3.29\sigma)$
	our sample vs. BZCat	52 vs. 2799	$0.25(1.15\sigma)$
Z	our sample vs. P21	50 vs. 1006	$0.05(1.97\sigma)$
	our sample vs. P17	50 vs. 505	$0.05(1.99\sigma)$
	our sample vs. S12	50 vs. 163	$< 10^{-3} (> 3.29\sigma)$
	our sample vs. BZCat	50 vs. 2803	$0.25(1.15\sigma)$
	our sample vs. 4LAC-DR3	50 vs. 1872	$0.01(2.68\sigma)$
$L_{\gamma}/L_{\rm Edd}$	our sample vs. P21	12 vs. 664	$0.22(1.24\sigma)$
	our sample vs. P17	12 vs. 49	$1.15 \times 10^{-3} (3.25\sigma)$
	our sample vs. S12	12 vs. 79	$0.12(1.55\sigma)$
$L_{ m disk}$ erg \cdot s ⁻¹	our sample vs. P21	32 vs. 664	$0.09(1.70\sigma)$
	our sample vs. P17	32 vs. 54	$3.16 \times 10^{-3} (2.95\sigma)$
	our sample vs. S12	32 vs. 79	$0.18(1.35\sigma)$
$M_{ m BH} [M_{\odot}]$	our sample vs. P21	32 vs. 664	0.01 (2.46 <i>\sigma</i>)
	our sample vs. P17	32 vs. 54	$< 10^{-3} (> 3.29\sigma)$
	our sample vs. S12	32 vs. 79	$0.02(2.34\sigma)$
r _{BLR} [cm]	our sample vs. P21	32 vs. 664	$0.09(1.67\sigma)$
	our sample vs. P17	32 vs. 54	$3.19 \times 10^{-3} (2.95\sigma)$
	our sample vs. S12	32 vs. 79	$0.18(1.34\sigma)$
$r_{\rm DT}$ [cm]	our sample vs. P21	32 vs. 664	$0.09(1.68\sigma)$
	our sample vs. P17	32 vs. 54	$3.16 \times 10^{-3} (2.95\sigma)$
	our sample vs. S12	32 vs. 79	$0.19(1.32\sigma)$

Azzollini et al., submitted

