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The Input Optic (10) subsystem takes

3-4km care of the laser beam downstream of

2| —] the pre-stabilized high-power laser

(PSL) and acts as interface between
the interferometer and PSL

For more details on GW experiments and results see
M. Mantovani’s & D. Lumaca’s talks today and F. Ricci'’s
plenary talk on Friday morning
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(IO EGOE: Main tasks of Input Optics System
The whole system must deliver :
* 3laserbeam atthe interferometer (ITF) input port with the required power and size

* 3goodquality beam (filtered by IMC cavity)
* frequency and anqgular stability sufficient to reach the sensitivity goal
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(1@ EG0E: Main tasks of Input Optics System

The whole system must deliver :
* 3laserbeam atthe interferometer (ITF) input port with the required power and size
* 3goodquality beam (filtered by IMC cavity)
* frequency and anqgular stability sufficient to reach the sensitivity goal

Its main components:

* Electro optic modulation system (EOM): Phase modulation of the laser beam for ITF
longitudinal and anqular control

* Input Mode Cleaner (IMC) cavity: passively filter out amplitude, frequency and beam jitter
noise

* Faraday isolator (Fl): isolates the Laser and the IMC from the back-reflected light of the
interferometer

* Mode matching optics: Adjust the beam dimension to properly match it on the
interferometer to reduce as much as possible the light lost from the Laser bench to the ITF

* (Good quality optics: waveplates and polarizers able to withstand high laser power.
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(0O |0: the case ofVirgo detector
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(0O |0: the case ofVirgo detector
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(I0)E60z=: |0: the case of Virgo detector
* External Injection Bench (EIB): |
RF generation, beam pointing control,

IMC automatic alignment of ﬂ

Suspended Injection Bench (SIB) 1: end mirror -
Reference cavity (RFC), Power
stabilization sensor, Mode-matching
telescope

SIB2: RFC lock sensors, interferometer
(angular and longitudinal) sensors

IMC: mode cleaning, frequency
stabilization

Parameter Requirement

Transmission to the ITF > 70% TE My
Non-TEMgg power < 5% .
Intensity noise 2 x 10-%//{H2) at 10 Ha Example of 10 requirements from
Beam Jitter < 107 rad/\/(Hz) (f >10 Hz) Adv Technlcal DeSIQn Report

Frequency noise (for lock acquisition) <1 Hz r.m.s
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00 Main components: Input mode cleaner

The IMC filters and stabilizes spatial mode and polarization of the laser before its
injection in the interferometer

Laser frequency fluctuations are 3 common noise that should be cancelled out on
the anti-symmetric port; due to unavoidable asymmetries though they couple
with the GW detection channel

rs (dihedron) in SIB1 tower

IMC inpur mirro,
|

> Master laser frequency pre-stabilized on IMC
length in order to allow the lock of the ITF

* Bandwidth up to 110kHz

> Low-frequency stabilization (<10Hz) based on a
monolithic reference cavity made with Ultra-
Low-Expansion glass

> Oncethe ITF locked, the laser frequency
stabilization is assured by the arms length
(CARM signal) [1]

[1] M. van Dael, er a/, Control of the laser frequency in the Virgo interferometer: Dynamic noise budgeting for controller optimization, ) 7 IMC end mirror payload in MC tower
Astropart. Phys, 164 (2025) 103028
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(1)) EGOEE: Faraday isolators
Challenges :

* Withstand high continuous laser power on long periods (250W)

* Compensated interm of thermal lensing (residual thermal lensing > 100 m)
* (Compensated interm of depolarization.
* Isolation factor >40 dB with high power laser

* UHVcompatible: residual pressure <10 mbar
* Transmission > 95%
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Challenges :
Withstand high continuous laser power on long periods (250W)

Compensated in term of thermal lensing (residual thermal lensing > 100 m)

Compensated in term of depolarization.
Isolation factor >40 dB with high power laser

UHV compatible: residual pressure <10-° mbar
Transmission > 95%

Isolation Faraday #1 Vs Optical Power
| A

Faraday isolators

Isolation Ratio (dB)
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Fl developed in collaboration with the Institute of
Applied Physics (Russia) and the University of Florida
(LIGO project) [1]

[1] O. Palashov, er a4, High-vacuum compatible high-power Faraday isolators for gravitational-wave interferometers, JOSA B, Vol. 29, Issue 7, pp. 1784-1792 (2012)
25-09-2024
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(10l EGOEE: Faraday isolators

Challenges: % g
*  Withstand high continuous laser power on long periods (250W) o

* Compensated interm of thermal lensing (residual thermal lensing > 100 m)
* (Compensated interm of depolarization.
* Isolation factor >40 dB with high power laser

* UHVcompatible: residual pressure <10 mbar
* Transmission > 95%
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< Thefaraday isolators are fixed onto suspended optical benches (e.g. input, output, and squeezing). F

« | Magnetic forces and torques can displace suspended benches ultimately causing a displacement
. Nnoise which enters to the GW signal.

4., *Virgo internal report VIR-0120A-23 f
= —.‘—Rppwnmmwwmmﬂda
= : : ' ‘ i - = (LIGO project) [1]

60 80
Optical Input Power (Watt)

[1] O. Palashov, er a4, High-vacuum compatible high-power Faraday isolators for gravitational-wave interferometers, JOSA B, Vol. 29, Issue 7, pp. 1784-1792 (2012)
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(IO €GO Electro-optic modulators
High-power compatible electro-optic modulators (EOM) are used to phase-modulate the
laser beam. This technique generates error signals which allow to control optical cavities
Requirements:

® Withstand 200W CW laser power @1064nm

Limited thermal lensing effect (low absorption crystal used (RTP))
Maximum modulation depth=0.2

Low phase noise (mostly related to the RF oscillator)

Low Relative Amplitude modulation (RAM) noise

25-09-2024 RICAP 24 8/16



(IO)EGO= Electro-optic modulators
High-power compatible electro-optic modulators (EOM) are used to phase-modulate the
laser beam. This technique generates error signals which allow to control optical cavmes

Requirements: /\’
®* Withstand 200W CW laser power @1064nm Electro optic material chosen: N
* Llimited thermal lensing effect (low absorption crystal used (RTP)) Rubidium Titanyle Phosphate — RbTiOPO4
® Maximum modulation depth=0.2
®* Low phase noise (mostly related to the RF oscillator)

Low Relative Amplitude modulation (RAM) noise
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(IO)EGO= Electro-optic modulators
High-power compatible electro-optic modulators (EOM) are used to phase-modulate the
laser beam. This technique generates error signals which allow to control optical cavities

Requirements: ’ 4\
® Withstand 200W CW laser power @1064nm Electro optic material chosen: SP4
* Llimited thermal lensing effect (low absorption crystal used (RTP)) Rubidium Titanyle Phosphate — RbTiOPO4
® Maximum modulation depth=0.2
®* Low phase noise (mostly related to the RF oscillator)

Low Relative Amplitude modulation (RAM) noise
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unwanted beam amplitude modulation
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(I@)EG0=: Relative Amplitude Modulation Stabilisation servo

* The Relative Amplitude Modulation Stabilisation (RAMS) Servo stabilizes the modulation s/idebandsbefore they are
applied to the EOM

* The free-running noise of the modulation system is basically due to the RF Source, the LNFS-100 (chosen due to its
good performance in terms of Phase Noise)

® Electronics downstream does not add amplitude noise contribution exceptin one case, the 56 MHz sideband, where
we use a more powerful RF Amplifier

RF Out
— —

RF In from Amp
K 3
Power Amplifier i i
In-the-loop Out-of-the-loop
Detector Detector
(Sensor] ) (Sensor)
FaX
to DAQ
] Signal Signal : :
Loop Differential Conditioning Conditioning
Closed Filter | Amplifier
F. Nocera, B. Montanari, EGO electronics group (Auto)
o]
[Maneull) 4_ vref
Virgo internal note VIR-1024C-20, VIR-0066A-24 Loop ’
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(IO EGOE: Relative Amplitude Modulation Stabilisation servo

* The Relative Amplitude Modulation Stabilisation (RAMS) Servo stabilizes the modulation sidebandsbefore they are
applied to the EOM

* The free-running noise of the modulation system is basically due to the RF Source, the LNFS-100 (chosen due to its
good performance in terms of Phase Noise)

* Electronics downstream does not add amplitude noise contribution except in one case, the 56 MHz sideband, where
we use a more powerful RF Amplifier
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Virgo internal note
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RAMS servo works as expected on the two modulation frequency used for the ITF, even though,
Virgo sensitivity is not limited yet by RAM noise
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(10} GO High magnification mode-matching telescope

Due to the large laser beam and the limited space available, an original and compact design has been
designed for the input telescope for the Virgo detector: a catadiopr system
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[1] C. Buy, E. Genin, M. Barsuglia, R. Gouaty, and M. Tacca, Design of a high-magnification and low-aberration compact catadioptric telescope for the Advanced Virgo
gravitational-wave interferometric detector, Class. Quantum Grav., 34 095011 (2017)

[2] M. Tacca, F. Sorrentino, C. Buy, M. Laporte, G. Pillant, E. Genin, P. La Penna, and M. Barsuglia, Tuning of a high magnification compact parabolic telescope for centimeter-
scale laser beams, Applied Optics, Vol. 55, Issue 6, pp. 1275-1283 (2016).

[3] B. Canuel, E. Genin, G. Vajente, J. Marque, Displacement noise from back scattering and specular reflection of input and output optics in advanced GW detectors, Optics
Express, Vol. 21, Issue 9, pp. 10546-10562 (2013).
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(I@EG0EE  Future evolution: Improvement of the IMC control and alignment loops

Current situation
» SIB1 used as an pointing actuator towards the ITF at low frequency
» Home-made Beam Pointing Control (BPC) is used to align beam from EIB on the IMC cavity [1]

Piezo Tip/tilt Mode
ﬁ actuator Cleaner
Cavity
Splitter L T°“|VT°; ds Principle of the BPC:
. The beam coming from the laser is
(o Lzl? ) ) shaped to the IMC input by using a
waist location . .. .
Ia NF | And postion wheeto telescope. The input beam jitter is then
oontrol tilt/shift . . .
D o optca 5tups controlled by two piezo tip/tilt
"> g3 B Quadrant photodiodes actuators and sensed by two quadrant

split photodetectors.

[1] B. Canuel, E. Genin, M. Mantovani, J. Marque, P. Ruggi, and M. Tacca, "Sub-nanoradiant beam pointing monitoring and stabilization system for controlling input beam jitter in

gravitational wave interferometers," Appl. Opt. 53, 2906-2916 (2014)
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(@EGOEE:  Future evolution: Improvement of the IMC control and alignment loops

Current situation
» SIB1 used as an pointing actuator towards the ITF at low frequency
» Home-made Beam Pointing Control (BPC) is used to align beam from EIB on the IMC cavity [1]

Piezo Tip/tilt Mode
ﬁ actuator Cleaner
Cavity
Splitter L TOV?’T‘; ds Principle of the BPC:
The beam coming from the laser is
Lzl: _ _ shaped to the IMC input by using a
waist location . .. .
Ia NF | A pasion whereto telescope. The input beam jitter is then
control tilt/shi o . .
2 ¢ oplc eupe controlled by two piezo tip/tilt
"> g3 B Quadrant photodiodes actuators and sensed by two quadrant

split photodetectors.

The idea would be to not use the benches as actuators but to have dedicated
pointing sensors/actuators on the benches :

» Pointing loop towards the ITF with an increased control bandwidth (up to

Galvo actuators,

1OOHZ). , : , : L Nikhef prototype
» New pointing actuators required (collaboration with A. Bertolini, Nikhef)

[1] B. Canuel, E. Genin, M. Mantovani, J. Marque, P. Ruggi, and M. Tacca, "Sub-nanoradiant beam pointing monitoring and stabilization system for controlling input beam jitter in
gravitational wave interferometers," Appl. Opt. 53, 2906-2916 (2014)
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Q)02 Future evolution: Magnetic shielding for Faraday Isolators

A mitigation solution for the FIl magnetic coupling is the installation of 3 magnetic shield which be
needed to:
> Improve isolation of suspended bench (Input and output optics benches) from magnetic
perturbation
> Ensure the good functioning of the galvo actuators

Modelling Oft!lﬁfi@ﬂ“ isolator magnet Design and prototyping

J.-L. Raymond, ParisTech
G. Quéméner, IN2P3 - LPC Caen A. Buggiani, EGO

Virgo internal note VIR-0120A-23
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(@NE60ES  Future evolution

: Magnetic shielding for Faraday Isolators

Experimental ongoing results
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25-09-2024
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European

(O EGOgE:: Conclusions

The Input Optics is one of the critical systems of GW detectors, with the aim to provide a low-
noise and stable laser field for the interferometer.

Principal components of this system are:
~ Electro optic modulation system
> Input Mode Cleaner cavity
~ Faraday isolator
> Mode matching optics

In the case of Virgo detector, strong effort has been done on improving some critical aspect, in
view of further detector upgrade, mainly on reducing magnetic coupling and relative
amplitude modulation noise.
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So long, and thanks for all the fish

Anything that can go wrong, will go wrong.

Murphy's Law
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