

H.E.S.S.

H.E.S.S. - status & recent results

Olaf Reimer for the H.E.S.S. collaboration

Roma International Conference on AstroParticle Physics 2024

High Energy Stereoscopic System

- \checkmark 4 x \varnothing 12m in operation since 2003, 1 x \oslash 28m since 2012
- 4 x camera upgrade 2017 (HESS1U), 1 x 2019 (NamCam aka CTA-MST FlashCam prototype)
- The presently operated in 2nd extension phase
- focus in extension phases: high efficiency (last 5 years > 97%, resulting in > 1400h/a)

legacy program + time domain opportunities

Performance boosted through extensive developments in principal H.E.S.S. simulation & analysis chains

H.E.S.

allowed for reconstruction & analysis of H.E.S.S. obs data in a new-quality, e.g.

Resolving acceleration to very high energies along the jet

of Centaurus A (Nature 582, 2020)

Resolving the Crab pulsar wind nebula at teraelectronvolt energies (*Nature Astronomy* 4, 2020)

Spectrum and extension of the inverse-Compton emission of the Crab Nebula from a combined Fermi-LAT and H.E.S.S. analysis (*A&A* 686, 2024)

Cosmic Ray Electron (+ Positron) Measurements

... it has been quiet from H.E.S.S. since preliminary results as of ICRC'17. Until last year (de Naurois @ ICRC'23).

MSSG

Depending on your perspective: CR e^{\pm} are an unavoidable contamination but constitute science case itself

H.E.S.S. (2008 & 2009): e^{\pm} spectra < 4 TeV ; spectral break at ~ 1TeV, confirmed by MAGIC, VERITAS, AMS-02, DAMPE, CALET.

New study by HESS towards higher energies (presently concluding journal review).

Analysis involves **'run-wise' simulations** where each 28 min data-set ('run') is simulated with actual pointing, specific NSB, telescope multiplicity, wobble offsets, transparency coefficients, dead-times etc., involving \sim 200 000 e[±] showers.

- Particle ID derived using quality of the fit (MSSG).
- Electron candidates are cut at MSSG < -0.6.
- Contamination by hadrons is derived from an analytic approximation to the MSSG distribution at each energy.

CR e± Data Selection Summary

- Only CT1-CT4 (CT5 has small fov)
- Only 2003-2015 (homogeneity)
- Standard quality cuts
- ZA < 45° (threshold)
- |b| > 15° (avoid Galactic Plane)
- Four telescope events
- Central 4° of fov (reconstruction)
- d (sources) > 0.25° (PSF: 0.06°)
- d (LMC, SMC) > 5°

A lot of data...

6830 runs corresponding ~ 2800h (>HGPS!) ...allowing for conservative selection

$$F(E) = F_0 \left(\frac{E}{1 \text{ TeV}}\right)^{-\Gamma_1} \left(1 + \left(\frac{E}{E_b}\right)^{\frac{1}{\alpha}}\right)^{-(\Gamma_2 - \Gamma_1)\alpha}$$

flux normalisation $F_0 = (126.1 \pm 0.5_{\text{stat}} \pm 13_{\text{sys}}) \,\text{GeV}^2 \,\text{m}^{-2} \,\text{sr}^{-1} \,\text{s}^{-1}$

No significant deviations from broken PL

No confirmation of 1.4 TeV excess/feature No spectral hardening above 5 TeV

 \varnothing potential DM signal (many!) \varnothing PSR J0855-4644 (Bao et al.).

$$F(E) = F_0 \left(\frac{E}{1 \text{ TeV}}\right)^{-\Gamma_1} \left(1 + \left(\frac{E}{E_b}\right)^{\frac{1}{\alpha}}\right)^{-(\Gamma_2 - \Gamma_1)\alpha}$$

spectral shape

$$\Gamma_1 = 3.25 \pm 0.02_{\text{stat}} \pm 0.2_{\text{svs}} \\ \Gamma_2 = 4.49 \pm 0.04_{\text{stat}} \pm 0.2_{\text{sys}}$$

E_{low} softer but compatible with3.2 (AMS-02/CALET) & 3.1 (DAMPE/Fermi-LAT)

E_{high} softer than DAMPE & VERITAS

H.E.S.

$$F(E) = F_0 \left(\frac{E}{1 \text{ TeV}}\right)^{-\Gamma_1} \left(1 + \left(\frac{E}{E_b}\right)^{\frac{1}{\alpha}}\right)^{-(\Gamma_2 - \Gamma_1)\alpha}$$

flux normalisation

 $F_0 = (126.1 \pm 0.5_{\text{stat}} \pm 13_{\text{sys}}) \,\text{GeV}^2 \,\text{m}^{-2} \,\text{sr}^{-1} \,\text{s}^{-1}$

- E_{low} 30% higher than other measurements
 - systematic uncertainties
 - < 15% (<3 TeV) due to residual hadronic contamination
 - compatible, no preference to discrepancy between AMS-02/CALET and Fermi-LAT/DAMPE

break energy

- $E_b = (1.17 \pm 0.04_{\text{stat}} \pm 0.12_{\text{sys}}) \text{ TeV}$
 - marginally compatible with DAMPE & CALET
 - significantly higher than VERITAS
 - incompatible with 95% lower limit (Fermi-LAT)

$$F(E) = F_0 \left(\frac{E}{1 \text{ TeV}}\right)^{-\Gamma_1} \left(1 + \left(\frac{E}{E_b}\right)^{\frac{1}{\alpha}}\right)^{-(\Gamma_2 - \Gamma_1)\alpha}$$

break energy

$$E_b = (1.17 \pm 0.04_{\text{stat}} \pm 0.12_{\text{sys}}) \text{ TeV}$$

sharpness of spectral break $lpha=0.21\pm0.02\,_{
m stat}\,^{+0.10_{
m sys}}_{-0.06_{
m sys}}$

Young Massive Stellar Clusters

H.E.S.S

complex, shell like morphology, with Wd1 at its center Pevatron candidate, but spectrum steepens above ~10 TeV $W_e \sim 7.2 \times 10^{48} (d/3.9 \,\mathrm{kpc})^2 \,\mathrm{erg}$ vs $W_p \sim 6 \times 10^{51} (n/1 \,\mathrm{cm}^{-3})^{-1} \,\mathrm{erg}$ Segment 3

Segment 4

- Segment 5

- Segment 1

Segment 2

2.0

(H.E.S.S., ApJ 970, 2024)

Young Massive Stellar Clusters

New: R136 (close to 30 Dor C) in LMC

NASA, ESA, CSA, STScI, Webb ERO Production Team

H.E.S.S.

Open cluster? Superbubble? OB association LH90? Vieu & Reville 2023 • Star Cluster

Massive star cluster

Declination (J2000)

- Young massive star cluster
- Evolved massive star cluster
- Extended massive star cluster
- Wind-blowing cluster
- Loose cluster

A young MSC (YMSC) is an MSC that still contains stars expected to undergo a transition to the WR phase in the end of their life. Assuming roughly that stars with ZAMS mass larger than $20M_{\odot}$ are expected to become WR stars (Crowther 2007; Sander, Hamann & Todt 2012), young clusters are clusters that are less than about 10 Myr old, assuming coeval star formation.

Young Massive Stellar Clusters

(H.E.S.S., *ApJ* 970, 2024)

New: R136 (close to 30 Dor C) in LMC

NASA, ESA, CSA, STScl, Webb ERO Production Team

H.E.S.S.

 $\Gamma_p^{30 \text{ Dor C}} =$ Γ_p^{R136} = *mind Fermi-LAT constraint

Luminosity [erg s]

$$\Gamma_{e}^{30 \text{ Dor C}} = -3.27 \pm 0.11_{\text{stat}}$$

$$\Gamma_{e}^{30 \text{ Dor C}} = -3.19 \pm 0.17_{\text{stat}}$$

$$\Gamma_{p}^{30 \text{ Dor C}} = -2.64 \pm 0.08_{\text{stat}}$$

$$\Gamma_{p}^{R136} = -2.59 \pm 0.13_{\text{stat}}$$
*mind Fermi-LAT constraint
$$W_{p}^{R136} \approx 9.7 \times 10^{51} (n/1 \text{ cm}^{-3})^{-1} \text{ erg}$$

- 13 -

spectro-morphological analysis with improved high-energy optimization (ABRIR, Olivera-Nieto et al. 2022)

Resolved jets of microquasar SS433 (H.E.S.S., Science 383, 2024)

now > 200h observation time (prev ~10h only u.l.)

- Multiple knots along jet on either side.
- Energy dependent morphology.
- Highest energies at e1/w1, lower energies at larger radii.

Microquasar SS433

HAWC paved the way.

spectro-morphological analysis with improved high-energy optimization

(ABRIR, Olivera-Nieto et al. 2022)

103

10

Resolved jets of microquasar SS433 (H.E.S.S., *Science* 383, 2024)

10-11 10^{-12} В west west E²^{dy} (TeV·Cm⁻¹², s⁻¹) 10⁻¹³ (TeV·Cm⁻¹³, s⁻¹) 10⁻¹⁴ 10-12 E²dN dE 10-13 (TeV-cm 10^{-1} Effelsberg Chandra H.E.S.S. + ÷ HAWC φ. Fermi-LAT ŝ 10-15 best-fitting model 10^{-14} 10^{-1} C.5 α) 8.5 (α) 8.5 (α) 8.5 (α) observed, this work previous work E^{2dN} de (TeV-0 10⁰ 10^{1} 10^{2} 10-15 10-12 10-9 10-6 10-3 100 Energy (TeV) Energy (TeV) iği Previous work, central source 10-11 10^{-12} This work, central source 10-14 east east This work, e3 (10⁻¹² 10⁻¹³ 10⁻¹³ 10⁻¹⁴ 100 E2<u>dN</u> <u>dE</u> 10¹ Energy (TeV) (TeV-ci Nothing from central source No significant variability. XMM-Newton Effelsberg H.E.S.S. + 4 Fermi-LAT HAWC ÷ ŝ best-fitting model 10 10^{-14} observed, this work <u>6</u> previous work idual Resi 10^{1} 10^{0} 10^{2} 10-15 10-12 10-9 10-6 10-3 10⁰ Energy (TeV) Energy (TeV)

Microquasar SS433

SS433 lobes spectra

Microquasar V4641 Sgr

HAWC paved the way once. So it could work again :)

spectro-morphological analysis with improved high-energy optimization (ABRIR, Olivera-Nieto et al. 2022)

- \sim 15 h archival data + \sim 100 h dedicated observations
- Clearly detected, elongated and asymmetric
- Bright, hard (<2) spectrum

Microquasar V4641 Sgr

spectro-morphological analysis with improved high-energy optimization (ABRIR, Olivera-Nieto et al. 2022)

- V4641 not in the center of emission
- best described as a single component
- asymmetric: 0.45° major vs 0.07° minor axis

Microquasar V4641 Sgr

spectro-morphological analysis with improved high-energy optimization (ABRIR, Olivera-Nieto et al. 2022)

1e-6

Dust opacity at

353 GHz

6.0

5.5

5.0

4.5

4.0

18^m

16^m

Compact cataclysmic variable: WD + main sequence star Roche lobe overflow

 V1324 Sco 2012, V959 Mon 2012, V339 Del 2013 (Ackermann+14)

. . .

• V1369 Cen 2013, V5668 Sgr 2015 (Cheung+16)

Symbiotic system: WD + Red Giant accretion from red giant wind

Credit: David Hardy

- Symbiotic V407 Cyg 2010 (Abdo+10)
- Symb.-rec. V745 Sco 2014 (Cheung+14)
- Symb. V1535 Sco 2015 (Franckowiak+18)
- Recurrent RS Oph (Cheung+22)

RS Oph

RS Oph outburst reported on 8th Aug 2021, 22:20 UTC (AAVSO)

Night	$T_{ m obs}$ (UTC)	Livetime (hours)	Significance (σ)
09 Aug. 2021	18:17:40	3.2	5.8 (6.4)
10 Aug. 2021	17:53:46	3.7 (2.8)	9.0 (7.1)
11 Aug. 2021	17:44:08	3.7	9.8 (9.6)
12 Aug. 2021	18:17:12	2.3	13.6
13 Aug. 2021	17:44:43	2.8	10.5 (9.4)
25 Aug 07 Sep. 2021	17:48:03; 19:47:31	14.6 (13.4)	3.3 (2.3)

- H.E.S.S. flux between 250 GeV and 2.5 TeV
- Fermi flux between 60 MeV and 500 GeV
- Peak H.E.S.S. flux 3 days after optical peak (T₀)
- 2 days after Fermi LAT maximum
- Comparable decay slope
- γ -ray emission still visible after ~ 20 days

Time-resolved hadronic particle acceleration in the recurrent nova RS Ophiuchi (H.E.S.S. *, Science* 376, 2022)

 \rightarrow nightly spectra modelled in hadronic emission scenario

- Confinement limit is the dominant constraint for protons
- Measured fluxes imply > 10% of internal energy to accelerate protons
- Delay in Fermi vs. H.E.S.S. peak = finite acceleration time
- Hadronic model consistent with observed spectral evolution
- Leptonic model extremely stretched by required > 1% acceleration efficiency; incompatible to prediction of injection at high-Mach number shocks e.g. Malkov & Drury, 2001)

- Recurrent nova, every ~ 80 yr
- Distance 0.9 kpc (RS Oph: 1.4 kpc)

 \rightarrow might appear very much brighter in LAT than RS Oph \rightarrow might remain detectable a substantially later times

• Fermi-LAT provides daily monitoring through the FSSC

H.E.S.S. visibility

Binaries

Monitoring the Periastron passages

• PSR B1259/LS 2883 (2021)

- particular dense *after-Periastron* data set
- good overall match VHEγ X-ray
- no correspondence to 2021 GeV flare (t_p +55 ... +108)
- no obvious correlation VHEγ GeVγ
- significant spectral evolution GeV/TeV (~ $\Delta\Gamma$ = 0.56)

Binaries

Monitoring the Periastron passages

- PSR B1259/LS 2883 (2021)
- eta Carinae (2020)

- detected from 140 GeV ... \sim 1 TeV
- completion of all-phase orbit sampling
- soft spectrum with $\Gamma = 3.3 \pm 0.4$
- continuation of high energy (> 10 GeV) Fermi-LAT periastron emission
- hadronic emission scenario incl. p-cutoff & $\gamma\gamma$

stereo

PSF

Declination (J2000)

-59°

60

-61°

164°

Pulsar B0833-45 (Vela)

- Pulsed emission > 5 TeV
- P2: 20 100 GeV spectrum $\neq 1 20$ TeV spectrum

H.E.S.S., Nature Astronomy 7, 2023

Surveys

A major emphasis of HESS has been on surveys in various domains:

The HESS Galactic Plane Survey (2018) has been a key enterprise during the first decade of HESS.

- HGPS 2.0 is in preparation
- will approx. double # of sources
 - \rightarrow source morphology assessments
 - \rightarrow source extension assessments
 - \rightarrow diffuse emission assessment

- HESS Extragalactic Gamma-ray Survey (HEGS)
- Inner Galaxy Survey (Galactic Bulge)
- HESS LMC Survey

Summary

HESS continues at high efficiency and is engaged in a broad science bouquet:

- New studies of CR e± up to 40 TeV
- New accelerators: Young Stellar Clusters
- New diagnostics (Vela, Crab, μQSO)
- Monitoring (B1259-63, η Car)

Further results I had not had the time to present....

- New studies on diffusion (PWN halos)
- New constraints on AGN: M87 spectrum A&A 685, 2024;

EHT 2018 campaign: https://doi.org/10.1051/0004-6361/202450497

- New surveys \rightarrow towards a H.E.S.S. legacy
- New constraints on DM from Inner Galaxy Survey: Strongest limits on DM in this energy range https://doi.org/10.1103/PhysRevLett.129.111101
- 3rd extension period: 2025 2028
- New legacy program to be implemented

Thank you for your attention!

H.E.S.S. - status & recent results

Olaf Reimer for the H.E.S.S. collaboration

Roma International Conference on AstroParticle Physics 2024

Backup

Common (conventional) approach

Backup

H.E.S.S.

Credits: M. Holler

Backup

RWS approach

Credits: M. Holler