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1) PBHs & particle DM – Motivations

Radius of influence of a black hole in the radiation dominated era

• Naively, the sphere of influence of a black hole encloses as

much plasma as MBH.

MBH =
4⇡

3
r3
inf
(t) ⇢tot(t)

As time t goes on, ⇢tot decreases and rinf increases like T�4/3

with T the plasma temperature.

• A more refined argument (Adamek+’19) is based on the ac-

celeration of a test particle moving with the expanding plasma

and feeling the BH gravitational drag.

r̈ =
ä

a
r � GMBH

r2
= � r

4t2
� GMBH

r2

The turn-around radius of the trajectory is identified with the

radius of influence rinf .

• In a radiation dominated cosmology, trajectories are scale-

invariant with apices satisfying

y3
ta
= ⌘ta ⌧̃

2

ta
() r3

infl
= 2 ⌘taGMBH t

2 ,

where ⌘ta ' 1.086 (Boudaud+’21). Expressing cosmic time t as

a function of plasma density ⇢tot yields the new relation

MBH =
16⇡

3⌘ta
r3
inf
(t) ⇢tot(t)

rinf(t1)

rinf(t2)

PBH
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1) PBHs & particle DM – Motivations

from early ideas to the search of evidence

from early ideas to the search of evidence

• Carr & Hawking (1974) ) BHs in the early universe

– Formation and accretion
(

from inflationary density perturbations

from phase transitions

– Evaporation and constraints ) limits on fBH vs MBH

• DM in the form of PBH in the window [1018, 1021] g

• But many well-motivated candidates from HE physics

+ experiments to find them ) models are falsifiable

• PBH as DM – almost all or nothing (Lacki+’10)

) WIMPs collapsing on PBH during radiation era

) very dense spikes ) strong upper limits on fBH

• 2016 – Discovery of GW by LIGO+VIRGO ’15-16

PBHs are no longer a theoretical fantasy

– Heavy BHs in coalescence events unexpected

– Renewed strong interest and activity for PBHs

– GW observatories target coalescence of sub-solar objects

fBH(sub-solar)

+
constraints on h�annvi

Carr & Green, arXiv:2406.05736

Carr+’24
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2) Dressing of PBHs with thermal DM

Radius of influence of a black hole in the radiation dominated era

Naively, the sphere of influence of a BH encloses as much plasma

as MBH.

MBH =
4⇡

3
r3
inf

⇢tot(t)

rinf(t1)

rinf(t2)
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Outline

1) PBHs & particle DM – Motivations

2) Dressing of PBHs with thermal DM

3) Signatures and observational constraints

1) PBHs & particle DM – Motivations

2) Dressing of PBHs with thermal DM

3) Signatures and observational constraints

RICAP-24 Roma International Conference on AstroParticle Physics – Frascati – September 26,2024

1

2) Dressing of PBHs with thermal DM

Onion-shell dark matter mini-spike profile prior to collapse

• t < tkd : prior to kinetic decoupling, DM particles are dragged

by the expanding plasma.

• t = tkd : at kinetic decoupling, DM particles stop colliding on

the plasma. Those inside the influence radius at that time start

falling on the BH.

rkd = rinf(tkd) with ⇢kdi ⌘ ⇢DM(tkd)

• tkd  ti  teq : at time ti, DM particles located at ri = rinf(ti)

feel for the first time the BH drag and start falling onto it. Their

cosmological density is ⇢i = ⇢DM(ti).

⇢i / a�3

i / T 3

i / r�9/4
inf

while �i / a�1

i / Ti / r�3/4
inf

+
Expressing the radius r in units of the Schwarzschild radius rS
of the BH, we get the pre-collapse DM profile.

⇢i(r̃i) '
(

⇢kdi if r̃i  r̃kd
⇢kdi (r̃i/r̃kd)

�9/4 if r̃kd  r̃i  r̃eq

• teq < t : during the matter dominated era, the DM secondary

infall leads to DM haloes with much lesser densities.

r̃kd

r̃i
(

⇢kdi = ⇢DM(tkd)

�2
kd = Tkd/m� = x�1

kd

3
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2) Dressing of PBHs with thermal DM

Orbital kinematics
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• t = tkd : at kinetic decoupling, DM particles stop colliding on

the plasma. Those inside the influence radius at that time start

falling on the BH.

rkd = rinf(tkd) with ⇢kdi ⌘ ⇢DM(tkd)

• tkd  ti  teq : at time ti, DM particles located at ri = rinf(ti)

feel for the first time the BH drag and start falling onto it. Their

cosmological density is ⇢i = ⇢DM(ti).
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+
Expressing the radius r in units of the Schwarzschild radius rS
of the BH, we get the pre-collapse DM profile.
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• teq < t : during the matter dominated era, the DM secondary

infall leads to DM haloes with much lesser densities.
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2) Dressing of PBHs with thermal DM

Radius of influence of a black hole in the radiation dominated era

• Naively, the sphere of influence of a black hole encloses as

much plasma as MBH.

MBH =
4⇡

3
r3
inf
(t) ⇢tot(t) .

As time t goes on, ⇢tot decreases and rinf increases like T�4/3

with T the plasma temperature.

rinf(t1)

rinf(t2)

PBH
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2) Dressing of PBHs with thermal DM

Orbital kinematics – Reaching T from the injection at S

• DM particles feel only the gravitational field of the BH.

• DM trajectories are hereafter determined in the framework of

classical mechanics and Newtonian gravity.

• We can define the reduced orbital variables

r̃ =
r

rS
and � =

v

c

• Energy and orbital momentum are conserved throughout each

trajectory.

Ẽ =
E

m�c2/2
= �2 � 1

r̃
and L̃ = r̃ ^ �

• A DM particle injected at S reaches the target point T if its

orbital variables fulfill the condition

Ẽ(S) = �2

i �
1

r̃i
= �2

r +

⇢
�2

? ⌘ r̃2i �
2

i sin
2 ✓i

r̃2

�
� 1

r̃
= Ẽ(T)

where the orbital momentum is

L̃(S) = r̃i�i sin ✓i = r̃�? = L̃(T)
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2) Dressing of PBHs with thermal DM

Radius of influence of a black hole in the radiation dominated era

• Naively, the sphere of influence of a black hole encloses as

much plasma as MBH.
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2) Dressing of PBHs with thermal DM

Orbital kinematics – Reaching T from the injection at S

The conservation of energy and orbital momentum between S

and T has consequences on the DM phase space.
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Orbital kinematics
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by the expanding plasma.
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the plasma. Those inside the influence radius at that time start

falling on the BH.

rkd = rinf(tkd) with ⇢kdi ⌘ ⇢DM(tkd)

• tkd  ti  teq : at time ti, DM particles located at ri = rinf(ti)

feel for the first time the BH drag and start falling onto it. Their
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2) Dressing of PBHs with thermal DM

Building the dark matter mini-spike

The conservation of energy and orbital momentum between S

and T has consequences on the DM phase space.
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2) Dressing of PBHs with thermal DM

Radius of influence of a black hole in the radiation dominated era

• Naively, the sphere of influence of a black hole encloses as

much plasma as MBH.

MBH =
4⇡

3
r3
inf
(t) ⇢tot(t) .

As time t goes on, ⇢tot decreases and rinf increases like T�4/3

with T the plasma temperature.
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2) Dressing of PBHs with thermal DM

Building the dark matter mini-spike

Ingredients & Recipe

• The injection of a single DM particle at S yields the averaged

post-collapse density �⇢ such that
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• To deal with the pre-collapse DM distribution in phase space,

and not just with a single particle
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the onion-like structure discussed above.
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2) Dressing of PBHs with thermal DM

Post-collapse density profiles – numerical results
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i r̃i

velocity dispersion at

kinetic decoupling

velocity dispersion

at equality

critical mass M2 for which

dispersion peak is bound

critical mass M1 for which

dispersion at equality

is bound

increasing MBH

decreasing r̃

depending on how they overlap

di↵erent behaviours emerge
8
><

>:

• MBH  M1

• M1  MBH  M2

• M2  MBH

)
9



Early clustering of DM particles around PBHs
Density profiles and signatures

Pierre Salati – LAPTh & Université Savoie Mont Blanc
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DM skirts around PBHs self-annihilate ) �-rays, ⌫ and E injection

�BH =
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�BH depends on m�, Tkd, MBH and ⇢sat

• Inner DM distribution flattened by annihilations
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m�

h�annvi ⌧
where ⌧ = tU(z)� teq

• Transition in the (r̃,MBH) plane at r̃t and Mt such that

⇢sat = ⇢3/2(r̃t) = ⇢9/4(r̃t,Mt)

• At fixed ⇢sat, 2 slopes for �BH vs MBH

�BH /
(

M3

BH
if MBH  M1

MBH if MBH � M1

• At fixed MBH

�BH /
(

h�annvi2/3 if MBH  M1

constant if MBH � M1
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�-ray flux from DM skirts around PBH

• Standard calculation

– fBH is the fraction of DM in PBH

– Hz is the expansion rate at redshift z

Hz

H0

=
p

⌦⇤ + ⌦M(1 + z)3

– ⌧opt(E�, z) is the optical deph of the IGM

– The energy spectrum at injection is taken at

E
0
� = (1 + z)E�

• Recasting bounds from decaying DM
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Inverting the reasoning, and going a step further
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GW observatories target sub-solar BH

• Let us assume that fBH has been measured below 1M�, and

that PBHs with mass MBH have been discovered in GW events.

measured MBH & fBH ) m�, xkd, h�annvi

• Recasting bounds from decaying DM (Ando+’15)

m� �BH =
MBH

⌧�fBH

+
upper limit on h�annvi vs m� at fixed xkd

+
PBH fraction > 10�7 strong impact on WIMP

s-wave annihilation severely constrained

Lacroix+ in preparation
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Takeaway

• PBHs are a nice connection with inflation or topological defects in early universe.

• Currently directly probed by GW measurements through coalescence events.

• PBHs might be all of DM, but only in the asteroid window.

• If fBH < 1 ) Thermal DM collapses around PBH into ultra-dense mini-spikes.

• Big step forward by Eroshenko ) orbital momentum matters!

• We reached a fully analytical understanding of the log indices
(see analytical solutions in arXiv:2203.16440).

• fBH > 10�7 ) Thermal DM annihilating through s-wave strongly constrained.

If found even as a tiny DM subcomponent
PBHs are strong perturbers to DM pheno

Thanks for your attention
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