

Status and Perspectives of the Real-Time Control of VIRGO Gravitational Waves Detector

Alberto Gennai on behalf of the VIRGO Collaboration

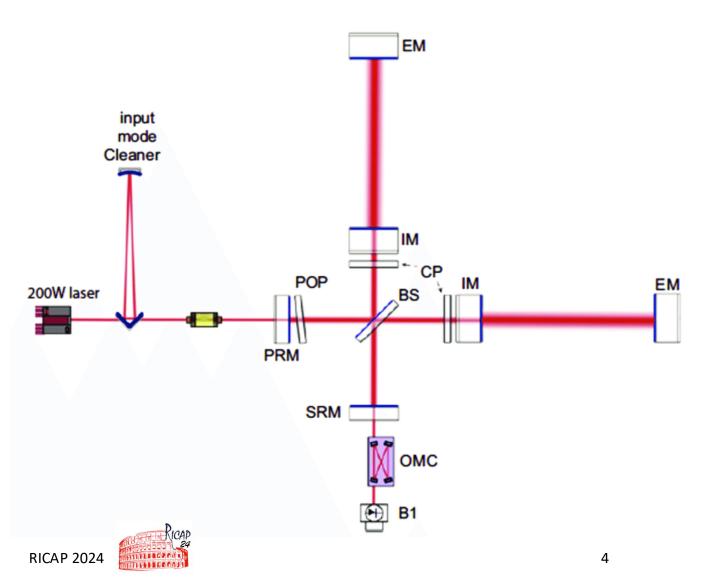
RICAP 2024 – Rome International Conference on AstroParticle Physics 23–27 Sept 2024

Abstract

- The Advanced VIRGO detector is currently taking data during the second part of the fourth observation run called O4b, which began last April and is scheduled to finish in spring 2025.
- VIRGO uses a custom complex real-time control system consisting of 135 multicore DSP processors and more than 1,000 channels of high-resolution analog inputs and outputs.
- In this talk we summarize the main requirements with associated technical choices focusing mainly on electronic hardware, entirely designed and produced by INFN. We also presents our plans for upcoming upgrades targeting next VIRGO observation run O5 and that will also lead to the conceptual design of the control system for the third-generation ground based detector Einstein Telescope.

• VIRGO is a large interferometer located near Pisa in Tuscany, designed and built by a collaboration between the French CNRS and the Italian INFN.

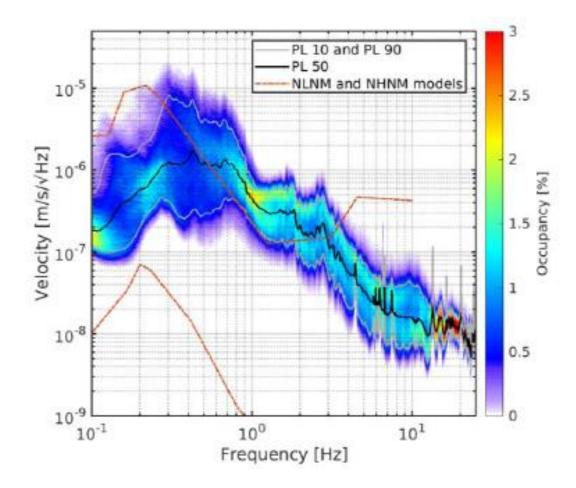
Today, there are more than 1000 Members in the Virgo Collaboration, representing more than 100 Institutions from several countries.


The VIRGO Collaboration

RICAP 2024

Optical Layout

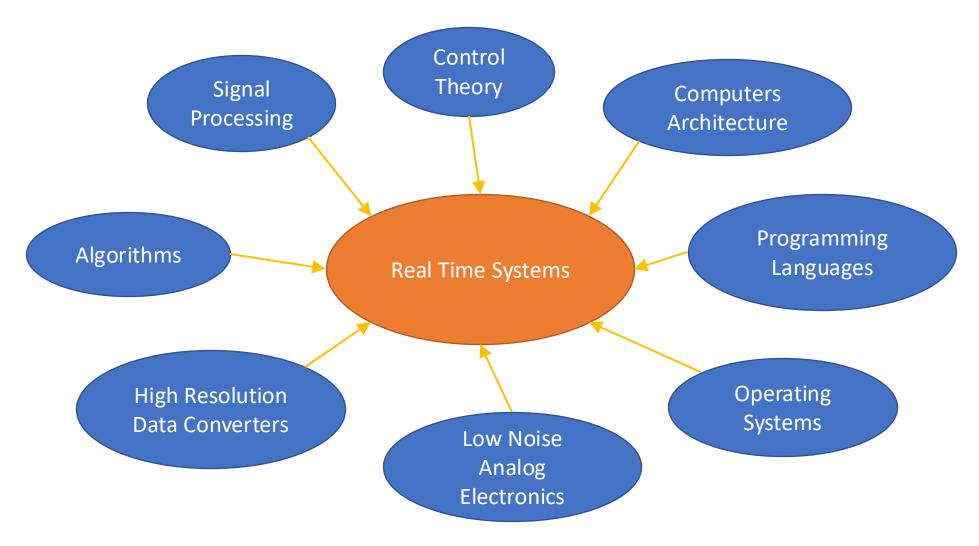
- VIRGO interferometer
- The two arms are Fabry Perot cavities 3km long
- Makes use of Power Recycling technique to increase the total circulating power
- Signal Recycling was recently introduced, before the start of running data taking (O4b)



Seismic Noise

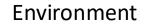
- Ground displacement is the largest noise source.
- Different sources:
 - Tidal strain (about 200 µm peak-to-peak between input and end mirrors)
 - Earthquakes
 - Seismic noise
 - Microseism: dominant between 0.1 and 1 Hz mainly due to sea waves
 - Anthropogenic:
 - between 1 and 5-10 Hz, due to heavy vehicles traveling along near roads and bridges
 - Between 10 and 40 Hz, due to onsite 'traffic'.

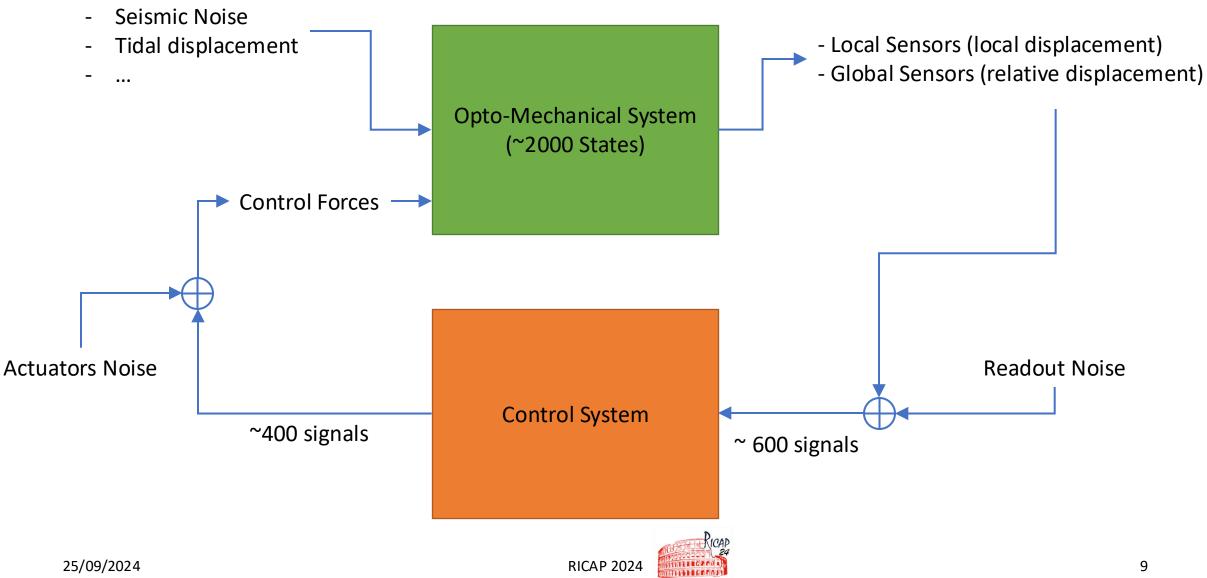
Seismic Isolation



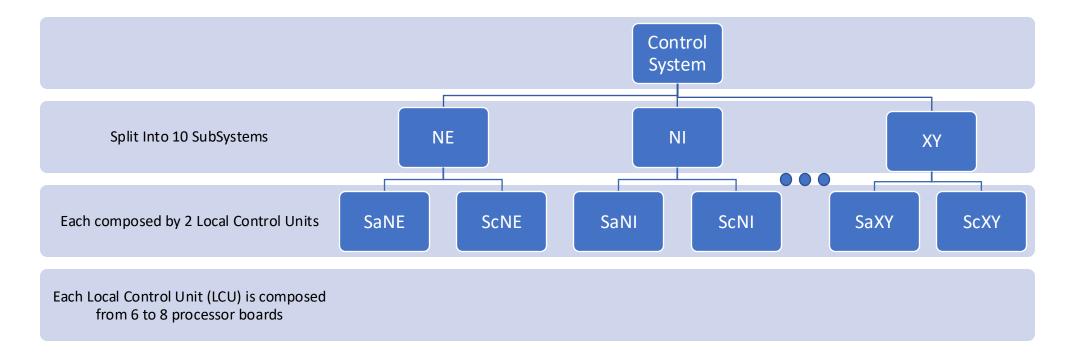
Control System

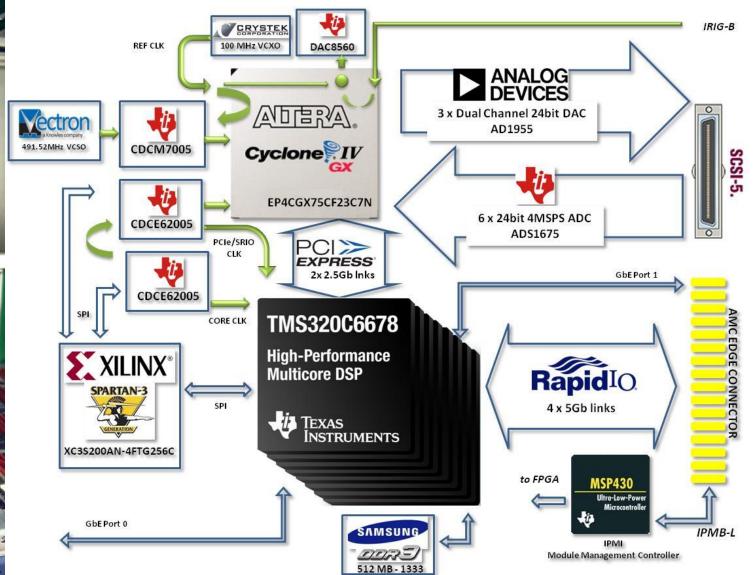
- All the elements of the interferometer are suspended from chains of pendulums. The spectral displacement above the frequencies of the main modes of the chains is effectively reduced.
- The displacement at the resonance frequencies is amplified, and since we want systems with low thermal noise, the quality factors are always very high. Moreover, the relative displacement between the various elements must be kept within the dynamic range of the readout system.
- To operate the interferometer, it is therefore necessary to use a complex control system that aims to reduce the residual displacement of the mirrors at the system's resonant modes and ensure precise control of the mirrors' position.

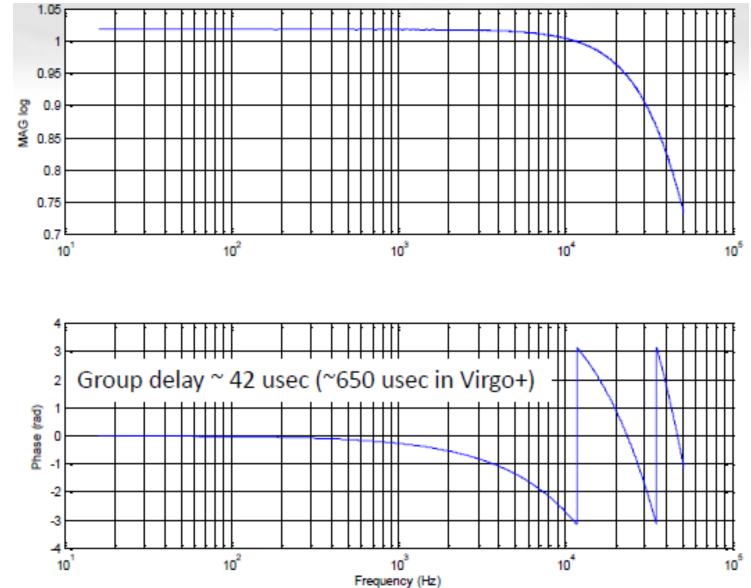


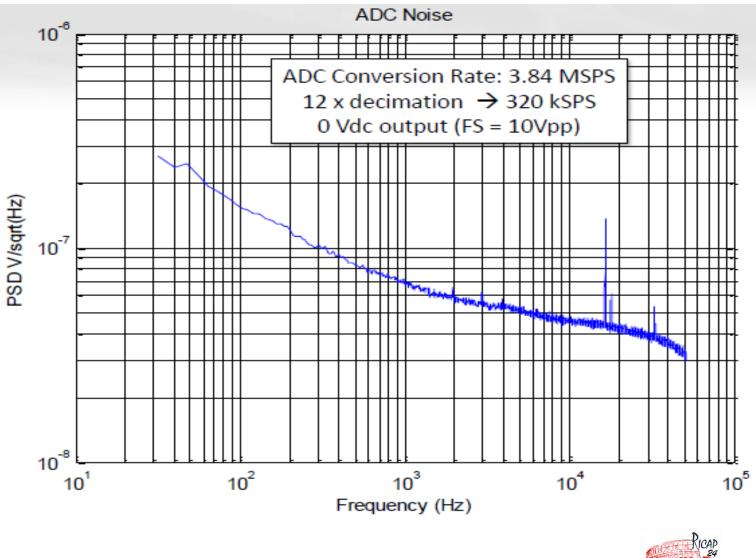

Disciplines Impacting Hard Real Time Systems Design

The Global Picture



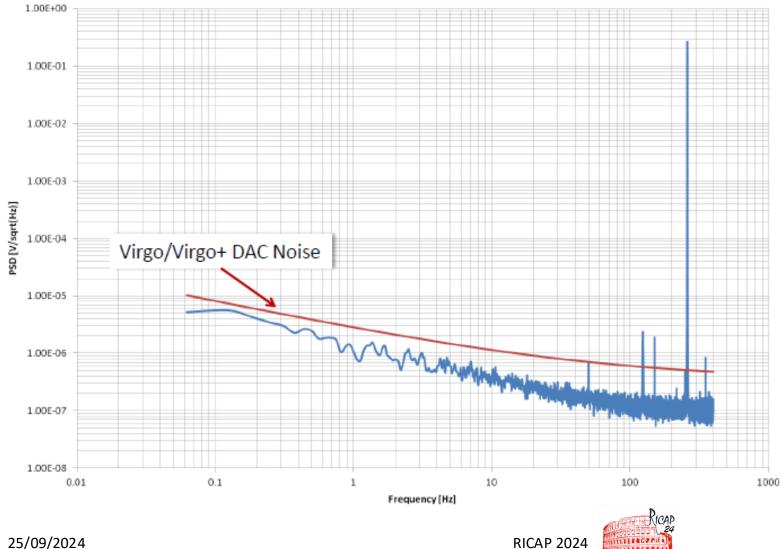

Control System Breakdown


UDSPT Board


- 8 core DSP TMS3206678
- 6ch ADC (24bit, 3.84MSPS)
- 6ch DAC (24bit 320 kSPS)
- Analog Front End electronics
- Timing and DAQ interfaces

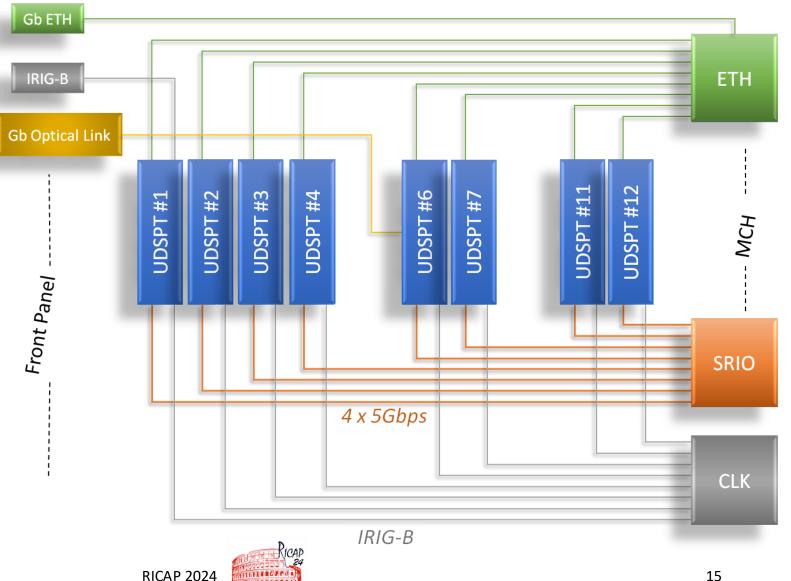
ADC-DSP-DAC Transfer Function

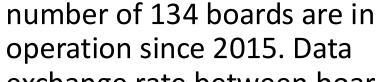
 The total time delay introduced by our control system can be measured evaluating the transfer function. We inject white noise into one ADC channel and we propagate the signal to a DAC channel.


VIRGO Pisa - ADC Noise

RICAP 2024

 Most of local sensors have a 50 kHz modulated output to minimize flicker noise contribution.


VIRGO Pisa - DAC Noise



 Only DC actuation \rightarrow need to deal with flicker noise

Digital Signals Path

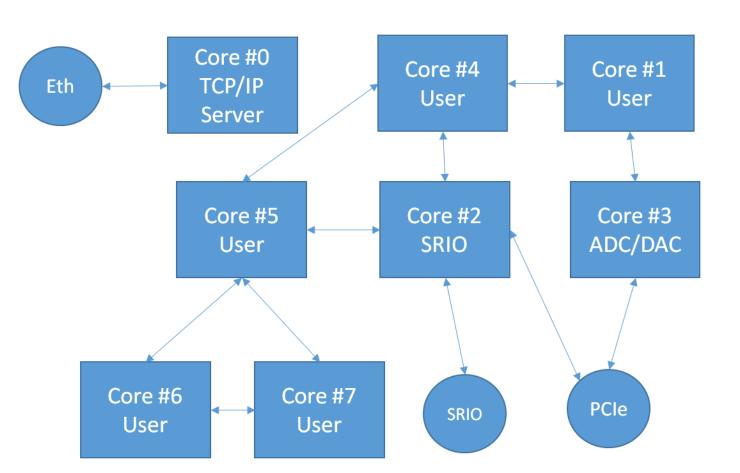
- Boards in each LCU are connected via point-topoint 20 Gbps links
- Boards can communicate with other LCUs via dedicated point-to-point optical link (1 Gb) and with external world via **Gb** Ethernet
- Boards synchronization is provided by connection to VIRGO timing distribution

exchange rate between boards is more that 4 Gbyte/sec (corresponding to about 8'000 simultaneous HD movies). Total number of DSP instructions is about 300'000'000 per

20 Crates equipped with a total

second

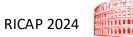
ScNE LCU Tasks List


Task Name							MFLOPS Probes decim.	
NE_LN	40	3181	13%	29	19.96	23.04	0	
NE_Mar_LN	40	5219	21%	85	40.52	23.04	0	
NE_PSDf	40	3699	15%	0	15.6	23.04	80.64	
NE_PSDi	40	3313	13%	136	22.72	23.04	0	
NE_PSDm	40	637	3%	0	2.76	23.04	0	
NE_PSDt	40	608	2%	0	2.68	23.04	0	
NE_F7_CD	40	1929	8%	21	. 11	23.04	0	
NE_F7_LVDT	40	699	3%	0	1.88	23.04	0	
NE_F7_LVDT_Demod	320	1865	60%	66	134.4	C	0	Total MFLOPS
					251.52	184.32	80.64	516.48

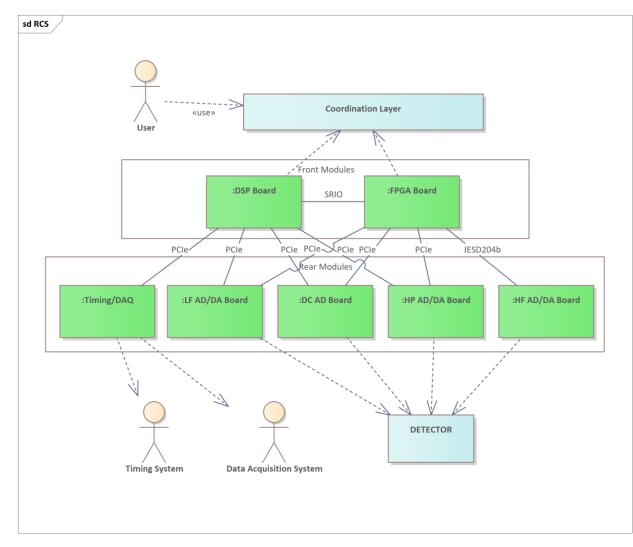
- 9 user tasks are running. Activation frequency is 40 kHz for all of them except for the last one activated 320'000 times per second. Execution is parallel: each tusk runs on a dedicated DSP core.
- 24 system task are running simultaneously to user tasks (ADC decimation, DAC inputs interpolation, Data Acquisition signals pre-processing, communication, ...)

DSP Cores

- Each DSP core, excluding C#0, runs a single task activated at a fixed frequency lower or equal to 320 kHz
- Communication is memory mapped using a 2 stages FIFO (ping-pong table)
- 5 out of the 8 cores available are user programmable



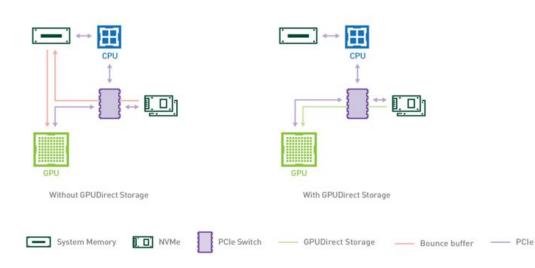
DSP Code


1 #in	nclude <asm header.net=""></asm>								
		1		+-}- C					
3 1101		1		tab 6					
4 9	START {			eader1 .equ 00055045h					
5			3 DAQ_header2 .equ 00055046h						
6			4 DMA7_chain .equ 000517e8h						
7	USE ADC = 1;	5 tolm_in_dpm_buffer .equ 14831a00h							
8	DOWN SAMPLING = 1;			in_ser_buffer .equ 14831					
9	W COEFF = internal;			in_glb_buffer .equ 14831					
10	SOURCE = parent;	8 tolm1_out_buffer .equ 00058300h							
11	DOLADDR = 194c0000;	9 t	:olm2	out buffer .equ 00058	700h				
12	DDL_ADDK = 194C0000; GRD ADDR = Guard4 to Core0;	10 Guard to Core0 .equ 1087f000h							
12		11 Guard4 to Core0 .equ 1483c400h							
14	DICT_NAME = Sc_NI;	12		.sect .textasm	; program	section			
	KEEP VALUES = no;	13							
15	DECAY_TIME = 0x00000000;	14 5	P	.set b15					
16		15	-	.500 513					
17	TOLM_OUT_N = 1;	16		.global dsp irg					
18 19	TOLM_OUT = {	17							
19				.global i_list					
20	PAGE = 0x00000000;	18		.global c_list					
21 22 23	NAME = PRB;	19		.global w_list					
22	ROUTING = 0xf94c0000;	20		.global noise_table					
23	TOLM = TOLM1;	21		.global cosine_table					
24 25 26 }	}	22 .global input_list							
25	23 .global output list								
26 }		24		.global Guard4_to_Core0					
27 28 A 29		25 d	lsp in	rq:					
28 A	ASM_START {}	26	_	.asmfunc					
29		27							
	DAC_SETUP {	28		mvc CSR, B2		; save old interrupt status			
31	NDAC = 6;	29	1	add -8, SP, SP		1			
32	OUT = (\$DAC_0xf8, \$DAC_0xf9, \$DAC_0xfa, \$DAC_0xfb,	30	· .	DINT		; disable interrrupts			
33	<pre>\$DAC_0xfc, \$DAC_0xfd);</pre>	31		stdw A11:A10, *SE	[1]	; $a10 = call in$			
34 }		32		stdw A13:A12, *SI		; al2 = tolm out address			
35		33		stdw A15:A12, SP		, arz - corm_ouc_address			
36 A	ASM CONTINUE {}					b10 = collowt			
35 36 A 37	_	34		stdw B11:B10, *SE		; b10 = call_out			
38 C	CALL {	35		stdw B13:B12, *SE		; b12 = tolm_in_address			
38 C 39	NAME = NI F7 LVDT Demod.hrd;	36		stdw B9:B8, *SP		; b8 = From_Slot buffer address			
40	COMM = "";	37		stdw B3:B2, *SP					
41	NINP = 0;	38		stw A8, * <mark>SP</mark> [1]		; save To_Slot buffer address			
42	NOUT $= 9;$	39		stw B6, * <mark>SP</mark> [1]		; save signals buffer address			
43	OUT = (lvdt1, lvdt2, lvdt3, vlvdt1, vlvdt2, vlvdt3, ratio 11, ratio 12,	40		stw A6, * <mark>SP</mark> [1]		; save probe buffer address			
44	ratio 13);	41		stw B4, * <mark>SP</mark> [1]		; save DAC address			
45 }									

 From a source code written in a simple object-oriented language we generate asm code for the cross-compiler that produces DSP binary code

KICAP

RCS – KATANE (AdV+ Phase II)


- MTCA.4
- DSP processor with additional 4 ARM cores-
- Board-to-board communication via RapidIO
- Processor-data converters communication via PCIe
- INFN Bologna and Perugia contribution

RCS - ZANCLE

• Future upgrades of our control system: Virgo_nEXT, Einstein Telescope

- We are starting from existing VIRGO system and evolve gradually towards future architecture where presumably A.I. will play a key role.
- DSP+FPGA architecture would evolve in GPU+FPGA architecture but we are still far in terms of Real-Time performances. Key focusing is in high resolution converters and in lower low-frequency noise in general.
- Whatever solution, software will play a major role.
- For initial ET a mixed approach could be the best choice.

THANK YOU

-

25/09/2024