

Constraints on the diffuse neutrino flux with **ANTARES**

RICAP-24, Frascati, September 23-27, 2024

Dr. Luigi Antonio Fusco lfusco@unisa.it

Università degli Studi di Salerno and INFN-NA Gruppo collegato di Salerno

- 1. Diffuse neutrino fluxes
- 2. The ANTARES analysis
- 3. Constraints on the spectral properties

A.Albert et al. JCAP08(2024)038

- The ensemble of all sources which are too faint to be detected individually produces a diffuse neutrino signal
- We know it comes from high-energy CRs interacting somewhere in the Universe
- It should follow the same spectral behaviour of the parent cosmic rays

$$\frac{\Phi_{\rm astro}^{1f}(E_{\nu})}{C_0} = \phi_{\rm astro} \times \left(\frac{E_{\nu}}{E_0}\right)^{-\gamma}$$
with $2 \lesssim \gamma \lesssim 3$

Diffuse flux searches

- Atmospheric neutrinos produced by CR interactions in the atmosphere
- Cosmic flux directly from CR sources
 - Soft spectrum for atmospheric neutrinos
 - Harder spectrum for cosmic neutrinos
 - \Rightarrow Search for high-energy excess

Conventional flux, neutrinos from pion and Kaon decays + some cosmic flux

- Data will follow the atmospheric flux at low energies and the cosmic one at high energy
- From the energy distribution, extract the cosmic flux parameters

Diffuse flux searches

E² dN/dE 1 TeV 10 TeV 100 TeV 1 PeV E

ANTARES (2007 – 2022)

ANTARES (2007 – 2022)

- 40 km off-shore Toulon, France
- 2.5 km of depth
- 0.01 km³ of instrumented volume

- "Legacy" ANTARES data sample from 2007–2022
- 4541 days of equivalent livetime
- All-flavour neutrinos
 - Track events: mainly u_{μ} CC interactions
 - Shower events: all flavour ν_{x} NC and ν_{e} CC
 - Low-energy shower events: additional TeV showers to boost sensitivity to soft signals

- Sensitivities have been computed for a cut-and-count analysis in each sample
- Tested varying the signal spectral index from 1.8 to 3.2
- Sensitivity energy range defined as where 90% of signal events are expected
- Blind analysis optimised on Monte Carlo simulations

Unblinding results

Looking at data:

- No significant excess of high-energy events is found
- Constraints on the neutrino flux properties are extracted

Note: in the previous analysis, a mild excess (2σ) was observed. New event selection leads to a more pure neutrino sample which is more robust against systematics

Reconstructed energy distributions

Reconstructed energy distributions

Reconstructed energy distributions

Constraining the cosmic spectrum

- Binned reconstructed energy distributions used to estimate normalisation-spectral index of the signal+background
- Bayesian analysis
- Systematic uncertainties on the flux and on the detector efficiencies included

Constraints on spectral properties

Upper limits

Where is the sensitivity coming from?

ANTARES showers compared to:

- Atmospheric neutrinos
- IceCube HESE best fit expectations
- Sum of the two

Where is the sensitivity coming from?

ANTARES showers compared to:

- Atmospheric neutrinos
- IceCube HESE best fit expectations assuming a sharp cut below different neutrino energies

Constraints on low-energy spectral cut-offs

The highest-energy ANTARES events

Three remarkable events are found, with "signalness" of about 2/3

Event name	Туре	$E_{ u}$	$E_{ u}$ 68% range	T	(δ, RA)	β	S
		[TeV]	[TeV]	[MJD]	[deg]	[deg]	
Eärendil	track	700	[240, 2300]	58813.9136016	(-21.9, 156.4)	0.3	0.66
Beren	shower	110	[80, 210]	55562.2854789	(-82.3, 246.7)	0.5	0.69
Luthien	shower	95	[70, 180]	56473.3361997	(-12.8, 191.0)	2.0	0.66

- Angular uncertainty β from the event reconstruction
- Most-probable neutrino energies estimated from Monte Carlo simulations of analogous events
- No obvious source candidate found in astronomical catalogues

Conclusions

- ANTARES has concluded its long and successfull operation
- The "legacy" data is currently being analysed
 - Constraints on the properties of the diffuse neutrino flux
 - Many other analyses are being finalised
- Looking at the future: combination of ANTARES data with KM3NeT is already in progress