

The population of Galactic supernova remnants in the To

Rowan Batzofin^q, Pierre Cristofari², Kathrin Egberts^q, Constantin Steppa^q, and Dominique M.

- ¹ Universität Potsdam, Institut für Physik und Astronomie, Campus Golm, Haus 28, Karl-Liebknecht-Str. 24/25, 1 Golm, Germany
- ² Observatoire de Paris, PSL Research University, 61 avenue de l'Observatoire, Paris, France
- ³ Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans s/n, 08193 Barcelona, Spain

Outline

- What are we looking for?
- SNR population model
- Properties of the SNR population investigated
- Results

What are we looking for?

- SNRs produce gamma rays in the VHE (> 0.1 TeV) range but the details of this gamma-ray emission are not well understood.
- Questions to answer:
	- Can we describe the H.E.S.S. Galactic Plane Survey (HGPS) data?
	- What is the spectrum of accelerated particles?
	- What is the efficiency of particle acceleration?
	- Is the gamma-ray emission dominated by hadronic or leptonic origin?

Single SNR simulation

- Complicated modelling of the SNR
- Understanding the physical conditions and processes
- Only 1 SNR to compare to

What are we looking for?

Population simulation

- Simpler modelling of individua
- Reveal common properties of
- More SNRs for comparison

Rowan Batzofin 4

Gamma rays from SNRs

- Cosmic rays (CRs) are thought to be accelerated in SNR shocks
- The acceleration of CRs interacting with the interstellar medium can also produce gamma rays in the TeV range mainly via 2 mechanisms:

Hadronic

Leptonic

• Proton spectrum

• Electron spectrum

• Pion decay

• Inverse Compton

H.E.S.S. Galactic Plane Survey

- The High Energy Stereoscopic System (H.E.S.S.) performed a syster survey of the Galactic plane (0.1 to 100 TeV)
- A total of 78 sources detected

HGPS data

- Lower limit of 8
- Strict upper limit of 63 ($8 + 8$ + 47)
- Stringent upper limit of 28 ($+ 8 + 12$

SNR population model ingredients

- Physics of the supernova remnant
	- Evolution of the radius and velocity of the shock
	- Magnetic field amplification
	- Maximum energy of accelerated particles
- Distribution of sources and matter
	- Types of SNRs
	- Where in the Milky way
	- Ejecta mass and explosion energy distribution

Properties of the SNR population investigated

• Spectral index, α (4.0 to 4.4)

• Electron proton ratio, Kep $(10^{-2}$ to $10^{-5})$

• Efficiency of gamma-ray production, η (1% to 10%)

Realisation of a single population

- Taking into account the HGPS sensitivity
- Gray shaded region is HGPS sensitivity for a source with luminosity, $L = 5 \times 10^{33}$ ph s⁻¹

Results – Spectral Index

Cumulative distribution of the detectable SNRs averaged over 100 populations. Cumulative distribution of all simulated SNRs averaged over 100 populations.

Results – Acceleration efficiency

Rowan Batzofin 12 has been also been also

Results – Electron-proton ratio

Systematic exploration of parameter space

- It's clear that by changing only one parameter at a time that there should be other combinations that work.
- We explored a large parameter space changing α , η and K_{ep} .
- Need populations with:
	- > 8 SNRs (firm detections)
	- < 28 SNRs (associated)
- Additional E_{max} criterion
- 8 firmly detected SNRs
	- \blacksquare 4 E_{\max} > 10 TeV
	- 2 E_{max} ~ 10 TeV
	- 2 E_{max} < 10 TeV

Results – Parameter exploration

Best populations (>90% in agreement with HGPS)

- $K_{ep} \ge 10^{-4.5}$
- $4.1 \le \alpha \le 4.2$
- Hadronic ratio is not only dependant on K_{ep}
- SNRs dominated by emission from hadronic processes are typically younger and brighter than SNRs dominated by leptonic emission

Mathematisch-Naturwissenschaftliche Fakultät

Summary

- Confronted SNR population model to HGPS, taking into account the multi-dimensional expos first time.
- Explored a large parameter space but correlations prevent the identification of an optimal co
- Can exclude some parts off the parameter space:
	- $\alpha \leq 4.05$

$$
\bullet \ \ K_{ep} \gtrsim 10^{-2.5}
$$

- $K_{ep} \sim 10^{-3}$ requires $\alpha \gtrsim 4.35$ and $\eta \lesssim 0.02$
- Realisations with ≳ 90% compatible:
	- 4.1 $\leq \alpha \leq 4.2$
	- $10^{-5} \leq K_{ep} \leq 10^{-4.5}$
- Despite very low electron-proton ratios we still find many SNRs dominated by leptonic emiss
- The detectable SNRs are clearly a highly biased sample.
- Batzofin, et al. (2024), The population of Galactic supernova remnants in the TeV range, A&A doi: 10.1051/0004-6361/202449779124

Backup slides

Source and matter distribution

Steiman-Cameron

Reid

Rowan Batzofin 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999

- Relative rates of supernovae: - Thermonuclear 32%
	- Core collapse 68%
- 3 supernovae per century
- Source distribution models
	- Steiman Cameron (ISM)
	- Reid (Massive stars)
	- Green (SNRs)
	- CAFG (Pulsars)
- Matter distribution follows an model that closely matches t code - Shibata et al. 2010

Distribution of masses and explosion energies of simulated SNRs

Distribution of mass and energy of explosion

Thermonuclear: $M_{ej} = 1.4 M_{\odot}$ $E_{SN} = 10^{51}$ erg Core collapse: Initial mass distribution $N \propto$ $\int_{8}^{120 M_{\odot}} M_{\star}^{-2.3} dM_{\star}$

 E_{SN} interpolated from results
obtained in Sukhbold et al. 2016

Supernova dynamics

- Place the SNR in the Milky way.
- Shock velocity and radius are determined at the age of the SNR, taking into account the ISM.
- Magnetic field amplification:
	- $-$ initially from the growth of non-resonant streaming instabilities upstream of the shock Bell e
	- later resonant streaming instabilities Morlino & Caprioli 2012
- Based on the shock and the magnetic field amplification we calculate the maximum energy of accelerated particles.
	- Determined by the growth of non-resonant streaming instabilities (Bell) Bell et al. 2013
	- Determined by Hillas estimation (Hillas)

Supernova dynamics

•
$$
f_{CR}(p) = A \left(\frac{p}{m_p c}\right)^{-\alpha}
$$
 Differential spectrum of accelerated particles

- p is the momentum and α is the spectral index
- The normalisation (A) is found by requiring the CR pressure to be some fraction, η_{CR} of the ram pressure at the shock location.

$$
\cdot \frac{1}{3} \int_{p_{min}}^{p_{max}} dp \ 4\pi p^2 f_{CR}(p) p v(p) = \eta_{CR} \rho v_{sh}^2
$$
\nGamma

\nGamma

\nRam pressure

SNR population model improvements

Expanding on the work done by Cristofari et al.:

- Connection between ejecta masses and explosion energies
- Refined description of magnetic field amplification and corresponding maximum energy for protons and electrons
- Inclusion of diffusive shock reacceleration at SNR shocks
- Multiple prescriptions for the spatial distribution of SNRs in the Galaxy

Mathematisch-Naturwissenschaftliche Fakultät **Emission from reaccelerated CRs** - Crisi

- Galactic CRs reaccelerated at the SNR shock
	- Assume spectrum is the same as local interstellar spectrum

•
$$
f_0^{seed}(p) = \alpha \int_{p_0}^{p} \frac{dp'}{p'} \left(\frac{p'}{p}\right)^{\alpha} f_{\infty}(p')
$$

 $-f_{\infty}(p)$ is the distribution function at upstream infinity of the seeds to be rea $-p_0 = 10^{-2}$ GeV

Results – Spatial distribution

Cumulative distribution of the detectable SNRs averaged over 100 populations. Cumulative distribution of all simulated SNRs averaged over 100 populations.

Results – Maximum length of Sedov-Taylor phase

Cumulative distribution of the detectable SNRs averaged over 100 populations. Cumulative distribution of all simulated SNRs averaged over 100 populations.

Ratio of detectable sources dominated by hadronic emission

- As the electron-proton fraction increases the hadronic fraction decreases
- Is this the only property that changes the hadronic ratio?

Ratio of detectable sources dominated by hadronic emission

Cumulatively binned in integrated flux. Cumulatively binned in integrated flux.

Spiversita Mathematisch-Naturwissenschaftliche Fakultät $\cdot \frac{1}{\sqrt[3]{d_{a_m}}}$

Additional Emax criterion

Maximum energy of particles

Parameters: $\alpha = 4.2$ Kep = 10^{-5}

 $\eta = 0.09$ $ST = 20$ kyr

Steiman-Cameron

Age (kyr)

 $E_{\rm max}$ (TeV)

Age (kyr)

Results – Parameter exploration (Hillas)

 $\alpha = 4.0$ $\alpha = 4.05$ $\alpha = 4.1$ 100 -2 -• α < 4.15 and % of populations within stringent and E_{max} limits K_{ep} > 10⁻³ $-3 -4$ means too -80 -5 many $\alpha = 4.15$ $\alpha = 4.2$ $\alpha = 4.25$ detectable $-2 -$ 60 SNRs -3 $log(K_{ep})$ -4 40 • None of the $-5¹$ $\alpha = 4.3$ $\alpha = 4.35$ $\alpha = 4.4$ populations -2 within the -20 -3 stringent are -4 excluded by $-5 \circ$ 0.02 0.04 0.06 0.08 0.10 0.02 0.04 0.06 0.08 0.10 0.02 0.04 0.06 0.08 0.10 the E_{max} limit η

Radius and luminosity distributions

