Testing Cosmic-Ray Propagation Scenarios with AMS-02 and Voyager Data

Elena Orlando

Silver & Orlando (2024) ApJ 963, 111

RICAP 2024

CR Transport Equation

CR Propagation Scenarios Tested

PD (pure diffusion)
DR (diffusion and reaccelera)
DC (diffusion and convection)
DRC (diffusion, convection, and reacceleration)
DRC1: One break in spectral indices
DRC2: Two breaks in spectral indices
DRC_conv: Two breaks in spectral indices, stronger convection

Fitting Details

- Same propagation parameters for all species
- Isotropic diffusion
- Data: mainly Voyager (in interstellar space) & AMS02
- Force-field approximation for modulation
- High-energy break in propagation @ few hundread GV

```
Fitting Results (depending on the scenario):

\delta_1: ~ 0.4; \delta_2: 0.2

D_0: ~4.5 × 10<sup>28</sup> cm<sup>2</sup>s<sup>-1</sup> at 4 GV

0 km s<sup>-1</sup> < V<sub>A</sub> < 50 km s<sup>-1</sup>

0 km s<sup>-1</sup> kpc<sup>-1</sup> < dV/dz < 55 km s<sup>-1</sup> kpc<sup>-1</sup>
```

B/C

All scenarios are able to reproduce the main species (H, He, B, C, B/C, O, Ne, Mg, Si) Voyager and AMS-02 data.

B/C

In general the highest the number of parameters, the better the chi-square (except for PD)

contrary to what has been usually assumed, pure diffusion models do not need a break in the diffusion coefficient at low energy to fit B/C, while they need the same number of lowenergy breaks in the injection spectrum as diffusive-reacceleration models

Diffusion Coefficient

Diffusion Coefficient comparison with other works

Positrons

Different scenarios produce positrons that differ for one order of magnitude at ~GeV. Positrons need to be modulated more than nuclei. None of the scenarios can explain the poositron excess.

Antiprotons

Different scenarios produce antiprotons that differ for a factor of 2 ~10 GeV/nucl

Antiprotons/Protons

Above 40 GV no need of a new high-energy source, espe- cially for the PD scenario, which does not show a clear rigidity dependence in this range.

PD scenario

Results

- All scenarios are able to reproduce Voyager and AMS-02 data (the highest the number of free parameters, the better the chi-square)
- Pure diffusion scenario does not need a break in the diffusion coefficient at low energy to fit B/C, while it needs the same number of low-energy breaks in the injection spectrum as diffusive-reacceleration scenarios
- Pure diffusion does not need an upturn in the diffusion coefficient, as previously required to fit B/C
- Different scenarios produce positrons that differ for one order of magnitude
- Different scenarios produce antiprotons that differ for a factor of 2
- We confirm the ~ 10 GeV excess in the antiproton spectra for all scenarios
- The force-field approximation for modulation describes data well the species analyzed.
- injection spectrum of He harder than that of H
- He and C: same injection spectral index above several GV as in AMS02 data
- for all propagation scenarios, the resulting modulation should be stronger for positrons than for nuclei, with reacceleration models requiring a much larger modulation
- O: softer injection spectral index than He and C above several GV (contrary to AMS02 data) possibly due to the contribution of secondaries: O has less secondaries)

Silver & Orlando (2024) ApJ 963, 111