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• Cosmological observations set few constraints on the nature of dark matter

What can neutrinos teach us about dark matter?

ü Correct cosmological properties 
ü Arise naturally in many particle physics theories
ü Many and diverse set of implications for observable phenomena 
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• WIMP annihilations

• Neutrino excess from regions with high dark matter density

What can neutrinos teach us about dark matter?

ü Correct cosmological properties 
ü Arise naturally in many particle physics theories
ü Many and diverse set of implications for observable phenomena 



4

!

!̅

#$, &, '$, ($, )

#*, +&, '*, (*, )̅

• Regions with high dark matter density:

- Galactic Centre (dark matter halo)

- Sun (capture of local halo dark matter)

What can we measure with the KM3NeT?

• WIMP dark matter candidates with masses:

,-. ∈ 1 123, 100 523

- Lower limit given by detector capabilities
- Upper limit by cosmological constraints

• Different annihilation channels
(100% branching ratio)
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KM3NeT telescope

• Water Cerenkov detector

• Sensitive to GeV-PeV neutrino energies

• KM3NeT/ARCA 28 detection units (full detector 230)
• KM3NeT/ORCA 23 detection units (full detector 115)

Digital Optical Module

Detection unit
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KM3NeT telescope

• Different type of neutrino interactions à different event topologies



7

Analysis method: event selection

• Optical background (40K decays and 
bioluminescence) → removed by looking 
at coincidences between optical modules.

Selection:

• Atmospheric muons → cut events 
coming from above the horizon

• Atmospheric neutrinos → irreducible 
background.

• Quality cuts on reconstruction variables 
+ Boosted Decision Tree

Detector: ARCA21 (~70 days)

Reconstructed energy [GeV]

Final selection track events

Good data – Monte Carlo agreement 
thanks to improvement in calibration, 

reconstruction and simulations.

KM3NeT preliminary



Analysis method: source modelling

• Neutrino flux from WIMP annihilations
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Galactic Centre

- Dark matter density: NFW profile
- Spectra oscillated through vacuum.
- Line-like feature !!̅ annihilation channel.
- Simulated with Charon [1].
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Cr = capture rate

- Equilibrium between capture and 
annihilation processes.  Flux depends on 
WIMP-nucleon scattering cross section 
(spin dependent or independent).
- Simulated with WimpSim [2]. Flux from Galactic Centre
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Analysis method: detector response

Acceptance of the dark matter neutrino 
signal given the detector response.

Detector response characterised by:
• Effective area
• Angular error
• Energy error

Which improve with a growing detector.
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Analysis method: Log likelihood approach

- Binned and un-binned log likelihood method

- Dark matter signal events à as a function of the reconstructed energy and direction

- Background expectation à as a function of the reconstructed energy and direction
• Uniform in right ascension
• Declination dependent
• Derived from MC data or scrambled data if possible

- Log likelihood minimised

- Creation pseudo-experiments varying the signal strength à signal strength limit at 90% C.L. obtained from the 
test-statistic distribution.

- 90% C.L. translated into:
• Thermally averaged annihilation cross-section limit/sensitivity (Galactic Centre searches)
• Spin dependent cross-section or neutrino flux limit/sensitivity (Sun searches)
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Results: Galactic Centre

Annihilation cross section sensitivity for the full KM3NeT/ARCA detector (1yr)

- Best sensitivities for 
the !!̅ annihilation 
channel.

- Dependence on dark 
matter mass given by:

Larger neutrino flux for 
smaller mDM.

Better reconstruction of 
higher energy events.

Better signal-background 
discrimination at higher 
energies.
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Results: Galactic Centre

Annihilation cross section sensitivity/limits for the full and partial KM3NeT/ARCA detector, !"!# channel.
Comparison to other experiments [3,4,5,6,7,8,9].
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Results: Galactic Centre

Annihilation cross section sensitivity 
for a partial KM3NeT/ORCA detector, 
!"!# channel.

Comparison to KM3NeT/ARCA partial 
detector and ANTARES [9].
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Results: Sun

Spin dependent cross-section upper 
limit for dark matter in the Sun, with 
a partial KM3NeT/ORCA detector.

Compared to other experiments 
[11,12,13,14].
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Conclusions

• First limits on WIMP dark matter properties with KM3NeT, in the Sun and Galactic Centre.

• Very wide range of the mass parameter space explored by KM3NeT/ORCA and KM3NeT/ARCA.

• Sensitivities improve further with growing detectors and livetime.

• KM3NeT quickly reaching ANTARES limits.

• Promising sensitivities from dark matter in the Galactic Centre with the full KM3NeT/ARCA 
detector.

• Ongoing efforts to improve the sensitivity at lower masses with novel reconstruction methods 
for single-line events.
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Thanks for your attention!



17

Additional slides: Results for the Sun from ANTARES

Flux sensitivities for dark matter in 
the Sun with full ANTARES dataset, 
extending the mass range to lower 
masses with Neural Network single-
line reconstruction. Previous 
ANTARES result [10].
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