

SWGO: Status Update Ulisses Barres de Almeida (CBPF)

On behalf of the SWGO Collaboration

RICAP | Frascati, 2024

Content

- 1. Introduction
- 2. SWGO R&D
- 3. Site Selection

— RICAP | Frascati, 2024 —

MAGIC

CTAO

VERITAS

HAWC

SWG

HESS 🜔

Ground-based Gamma-ray Astronomy Network

Complex 8

— RICAP | Frascati, 2024 —

HAASO

Two techniques

Air-shower particle arrays

Larger and higher...

Motivation for a Southern Wide-field Array

Galactic Center 🔵

+ transientsynergieswith CTA

Westerlund

RX J1713.7-3946

LHAASO + Sur HAWC

Crab Nebula

HESS A&A 621 (2018) *Based on figure 16

Argentina

Brazil

Chile

China

Croatia

France

Germany

Czech Republic

Italy

Peru

Mexico

Portugal

South Korea

United States

United Kingdom

SWGO Collaboration

SWGO partners

- → 15 countries, over 90 institutes
- → + supporting scientists

Project Status

8	SWGO R&D Phase Milestones
🗸 M1	R&D Phase Plan Established
M2	Science Benchmarks Defined
M3	Reference Configuration & Options Defined
M4	Site Shortlist Complete
M5	Candidate Configurations Defined
M6	Performance of Candidate Configurations Evaluated
M7	Preferred Site Identified
M8	Design Finalised
M9	Construction & Operation Proposal Complete

Roadmaps

- → US Decadal Review
- → SNOWMASS, APPEC, Astronet

R&D Phase

- → Kick off meeting Oct 2019
- → Expected completion 2025
 - Site and Design Choices made

→ Then:

- Preparatory Phase
 - → Detailed construction planning
 - → Engineering Array in 2026
- (Full) Construction Phase
 → From 2027

Science Drivers

White paper in planning

Equatorial

Science Case	Design Drivers		
Transient Sources:	Low-energy sensitivity &		
Gamma-ray Bursts	Site altitude ^a		
Galactic Accelerators:	High-energy sensitivity &		
PeVatron Sources	Energy resolution ^b		
Galactic Accelerators:	Extended source sensitivity &		
PWNe and TeV Halos	Angular resolution ^c		
Diffuse Emission:	Background rejection		
Fermi Bubbles			
Fundamental Physics:	Mid-range energy sensitivity		
Dark Matter from Galactic Halo	Site latitude ^d		
Cosmic-rays:	Muon counting capability ^e		
Mass-resolved dipole/multipole anisotropy			
Science tools compatible with gammany			
Science tools compatible with gammapy			

The reference detector concept

— RICAP | Frascati, 2024 —

♦ muon tagging

Exploring WCD technologies

The Southern Wide-field Gamma-ray Observatory Development of new concepts and approaches

A next generation observatory

Exploring trade-off between core footprint and fill-factor.

Exploring very large areas and low fill-factors

13

Exploring trade-off between core footprint and fill-factor.

14

7

rec.probaMLP

Target Angular Resolution Unprecedented for wide-field instrument

Target Angular Resolution Unprecedented for wide-field instrument

Site Search

- Candidate Sites in Argentina, Chile and Peru
 - → Latitudes between 14° and 24° South
 - \rightarrow Elevations between 4,400 and 4,850 m a.s.l.
- Minimum available area 1 km²
- Solution for water provision / availability
- Site visits took place in Oct-Nov 2022
 - → At the first available opportunity after the COVID-19 Pandemic

Shortlisted Sites

- ◎ All sites extremely flat with < 2% slope</p>
- Shortlisting criteria included
 - → Science performance (array footprint + altitude)
 - → Site preparation and construction costs
 - Construction and operations risks
 - → Environmental impact
 - → Social impact
- Engagement with local communities 0 among priority factors in evaluation

Site Selection

Preferred and back-up site announced on 12th August

Pampa La Bola, Atacama Astronomical Park (Chile)

Site Selection

Preferred and back-up site announced on 12th August

Pampa La Bola, Atacama Astronomical Park (Chile)

Vast plateau at 4,770 m a.s.l.
23° South, 68° West
Available area superior to 1 km²
At the international road Chile-Argentina
Few km from ALMA
40 min from San Pedro de Atacama
2 hours from Calama (airport)

Site Selection

• Pampa La Bola, Atacama Astronomical Park (Chile)

Towards Construction

Construction phase aimed to start 2026

- SWGO collaboration will place a NSF request to fund the first SWGO-A stage.
 - → SWGO-A will work as a seed of SWGO and is expected to have superior performance to HAWC
 - → Current timeline foresees construction to start in 2026
- The SWGO Collaboration is looking for additional funding opportunities to complement SWGO-A
 - → In addition to double layer tanks, a shallow rotomolded tank is being explored as a solution for the outer array, profiting from R&D developments in Brazil/CBPF
 - → Multi-PMT modules developed in Italy/INFN are a potential photosensor solution for instrumenting such tanks.

Summary

- SWGO is approaching the conclusion of its R&D Phase, and has recently announced the observatory site.
- SWGO will be an international, multi-agency project
 - → Steering committee composed of 15 associated countries
 - → Spokesteam reflects the strong participation of Europe, North and South America
- SWGO will be the first km²-scale wide-field gamma-ray observatory in the Southern Hemisphere
 - → Open a new survey window in astronomy with unprecedented sensitivity
 - → Large opportunities for synergies with neighboring CTAO, including transients

A lake-based array?

- SWGO will be built in the Atacama Astronomical Park, in Chile.
 - → The scope of the 1 km²-scale array is from few hundred GeV to the PeV scale
 - → Timeline expectations are for construction to start in 2027
- The SWGO Collaboration will continue to explore a multi-km2 array as a possible future extension enhancing UHE capabilities
 - → In addition to the main site, a lake-based multi-km2 array extension is considered as a possible solution based on performance-cost considerations
 - → Developments are in the R&D stage and timeline is beyond the current scope of the main array preparation / construction.