

-- - - - -

Ciernate Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

MINISTERIO

The online data taking system of the Cherenkov Telescope Array Observatory

RICAP-24, Frascati, September 2024

Igor Oya, CIEMAT. CTAO ACADA Coordinator, Computing Deputy Coordinator <u>igor.oya@cta-observatory.org</u> For the CTAO ACADA Collaboration (see in last slide)

CTAO – Data Flow

- Control 60+
 telescopes
- BIG DATA project, generate hundreds of petabytes (PB) of data in a year (at least 6 PB after compression)
- Two sites and four off-site data centres

ACADA: Role and Context

 ACADA = Array Control and Data Acquisition system

CTAO

 System for central control and data acquisition of all telescopes & instruments at both CTAO sites

ACADA: Role and Context

ACADA System

Tech Stack

- Middleware: Alma Common Software (ACS), OPC UA (for access to monitoring data only)
- **Programming languages:** Python, Java, C++, Javascript (for the Human-Machine Interface (HMI) front-end only)
- Databases: MySQL, MongoDB, Redis, Cassandra
- Messaging and serialization: Apache Kafka, ZeroMQ, Google Protocol Buffers. CORBA (via ACS), REST/JSON
- Workload management system: Slurm
- Containers: Docker
 - Other: ESO's Integrated Alarm System(IAS)

Scheduling, control and supervision aspects

CTAO

- ACADA Governs all non-safety-critical automatic on-site operations
- Scheduling Blocks (SBs) are submitted by the Short-term Scheduler (STS), resources are allocated by the Resource Manager (RM), and commands are issued by the Central Control (CC)
- 99 telescopes in addition to numerous additional instruments
- Reaction times on the few seconds timescales
- Manage the simultaneously operating units ("subarrays"), with some shared resources (e.g. shared LIDAR jumping from one subarray to another)
- Implements different operation strategies (e.g., "wobble" mode, on-off, scans)

ACADA – Data Handling

- The Array Data Handler (ADH) is responsible for receiving and storing scientific data from the telescopes
- Receive trigger timestamps from the cameras and send back confirmation from the central trigger (after timestamp comparison)
- Reduce online the volume of received data
- Hand over the stored data to the Data Processing and Preservation System (DPPS)

Data throughput	24 Gb/s/LST (up to four)
	12 Gb/s/MST (up to 25)
	2 Gb/s/SST (up to 70)
Individual telescope trigger rates	15 kHz/LST (up to four)
	14 kHz/MST (up to 25)
	1.2 kHz/SST (up to 70)
Array-level trigger rates	40 kHz
Dead time after a coincidence	of 250 ns
DVR factor	Up to 50

ACADA - HMI

- CTAO
- Expose the status of the Array Elements and the ACADA system to the operator and provide interfaces to interact
- Monitor and modify predefined operation sequences, such as starting up the array at the beginning of the night
- Monitor the output of a SAG pipeline: results of the analysis and the representation of the data quality indicators
- Alarm management
- Environmental status, weather monitoring, sky quality, weather forecasting
- Provide access to terminals, shift logs, expert call sheets, incoming science alerts, etc

ACADA – Other

- Monitoring, Logging, Alarm systems
 - Cassandra/Kafka-bases solutions •
 - Using ESO's Integrated Alarm System (IAS)
- Transients Handler (TH) System
 - External and internal transient • science alerts, filtering, processing, and ranking.
 - Submitting SBs to the STS •

- SAG Pipeline
 - Quick-look online analysis of the data, producing scientific results and data quality indicators, to be exposed in the control room
 - Using gammapy
 - Generate candidates for internal *science alerts*, submitted to the TH
- Array Configuration System
 - Store and serve the configuration datasets to ACADA components and array elements
 - Dedicated REST and ACS-based API

Releases (RELs)

ACADA – development process

ACADA REL1 capabilities

CTAO

- Control a single telescope
- System start-up
- Data handling from the Cherenkov telescope camera
- Central trigger with unique ID assignment
- HMI: SB submission and execution and system start-up and shut-down
- Storage of monitoring and logging data from the telescope and ACADA processes
- Manual scheduling: queuing, validating, and submitting SBs via the HMI and the TH
- Handle gamma-ray burst science alerts by the TH
- (Simple) online analysis by the SAG, with the production of an event list, lightcurves, skymaps, and basic data quality checks
- Command line interface (CLI)
- Using official ICDs, state machines, and data models
- ~50% of ACADA's code already in place

ACADA REL1: QA metrics

Metric	Target
Lines of Code	290k
Code test (Line coverage)	>50% for every subsystem, 62% average (real values higher – ACS)
Automated tests	100% passed
Maintainability rating (SonarQube)	B (technical debt ratio max. 10%)
Reliability rating (SonarQube)	C (no blocker and no critical bugs)
Security hotspots (SonarQube)	100% reviewed
Duplicated lines (SonarQube)	<3%
Verification by inspection, demonstration, or analysis	100% passed
Verified ACADA level-B requirements	79
Verified ACADA subsystems level-C requirements	250
Verified use cases	34 (some alternate and exception paths skipped)

ACADA-LST1 test fall 2023

- ACADA REL 1.5 soon available
- New test campaign with LST1 planned in a few weeks from now

Major Telescope Operations Milestone Achieved with ACADA Software Integration

 DATE
 TOPICS

 [□] 20 December 2023

 [□] Announcements, Computing, CTAO-North, LST, Telescopes

https://www.ctao.org/news/major-telescope-operationsmilestone-with-acada-integration/

ACADA REL1.5

- Stabilization phase concluded, release is basically done
- Includes lessons learned and backlog from REL1
- Replace file-based configuration with service-based configuration
- Support operations with the FRAM (F/(Ph)otometric Robotic Atmospheric Monitor) instrument
- Upgrade ACS and OS: Almalinux 9 and ACS 2023DEC

Findings and lessons learned

CTAC

- The ACADA system works
- A more agile process is preferred by the team
 - We have installed a 3-week sprint dynamics and we are executing it in REL1.5
- Lots of small findings and experiences that helped polish the development workflow, and our Gitlab repository, Jenkins, and SonarQube setup
- Learning and addressing issues of the tech stack: ACS, Slurm workload management system...
- Understanding well use cases and turning them into test cases and pipelines
- Importance of CI pipelines
 - It was an effort to set up the CI, but it paid back well
 - We learned we need different pipelines: short, long, nightly pipelines, subsystem-, and system-level pipelines
- Understanding how to fix unstable/flaky test pipelines

Next ACADA releases

REL 2

- Support multi-telescope operations (up to 4)
- Support *Illuminator* instrument
- Automatic scheduling
- Deployment of the Array Alarm System
- More HMI panels

REL 3...7

- Support multi-telescope and multi-array operations
 incrementally up to 99 telescopes & 8 subarrays
- Support other instruments such as the LIDAR, integrate with the laser traffic control system

- Automatic alarm reaction
- DVR: Online lossy compression
- Higher reliability
- Optimized HMI

۲

Conclusions

- ACADA: System for central control and data acquisition or CTAO
- REL1 includes the core capabilities of ACADA
- ~50% ACADA code in place
- ACADA-LST1 I&T campaigns were successful
 - And a new campaign is scheduled in a few weeks from now
- ACADA REL1.5 will be out soon
 - Incl. Upgrade to new ACS2023DEC and Almalinux9
- ACADA REL2 Scheduled for 2025
 - Muti-telescope support
 - Automatic operations
- Further ACADA RELs with incremental capabilities
- Support development of the CTAO sites, telescopes integration, and early operations

I. Oya^a, P. Aubert^b, L. Baroncelli^c, P. Bolle^d, P. Bruno^e, A. Bulgarelli^c, S. Caroff^b, L. Castaldini^c, V. Conforti^c, A. Costa^e, L. David^f, G. De Cesare^c, T. Collins^g, E. de Ona Wilhelmli^d, A. Di Piano^c, K. Egberts^g, R. Fernandez^h, V. Fioretti^c, S. Fukami^c, E. Garcia^b, E. García^b, H. Gasparyan^d, S. Germani^k, C. Hoischen^g, F. Incardona^e, D. Kostunin^d, B. Lopez^a, E. Lyard^I, G. Maurin^b, D. Melkumyan^d, K. Munari^e, T. Murach^d, A. Muraczewski^m, N. Nakhjiri^j, D. Neise^{a, i}, G. Panebianco^c, N. Parmiggiani^c, E. Pietriga^f, V. Pollet^b, I. Sadeh^d, S. Sah^h, A. Sarkar^d, M. Schefer^I, T. Schmidt^d, D. Soldevila^j, C. Steppa^d, D. Torres^j, A. Tramacere^I, R. Vallés^j, T. Vuillaume^b, and F. Wernerⁿ, for the CTA Observatory^o

^oCherenkov Telescope Array Observatory gGmbH, Saupfercheckweg 1, 69117 Heidelberg, Germany. ^bUniv. Savoie Mont Blanc, CNRS, Laboratoire d'Annecy de Physiquedes Particules-IN2P3, 74000 Annecy, France. ^cINAF INAF/OAS Bologna, Via Gobetti 93/3, 40129 Bologna, Italy. ^dDeutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany. ^eINAF, Osservatorio Astrofisico di Catania, Via S Sofia 78, I-95123 Catania, Italy. ^fUniversit'e Paris-Saclay, CNRS, Inria, Gifsur-Yvette, France. ^gInstitut für Physik & Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam, Germany. ^hCOSYLAB JSC, Control System Laboratory, Gerbičeva ulica 64, 1000 Ljubljana, Slovenia. ⁱETH Zürich, Institute for Particle Physics and Astrophysics, Otto-Stern-Weg 5, 8093 Zürich, Switzerland. ^jInstitute of Space Sciences(ICE,CSIC), and Institut d'Estudis Espacials de Catalunya(IEEC), Carrer de Can Magrans, s/n 08193 Cerdanyola del Vallés, Spain. ^kUniversit'a di Perugia, Dipartimento di Fisica e Geologia, Italy.^ID'epartement d'Astronomie, Universit'e de Gen`eve, Chemin d'Ecogia 16, CH-1290 Versoix, Switzerland. ^mNicolaus Copernicus Astronomical Center, Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warsaw, Poland. nMax-Planck-Institut f`ur Kernphysik, D 69029 Heidelberg, Germany. ^ohttp://www.cta-observatory.org

The authors gratefully acknowledge financial support from the agencies and organizations listed here: <u>https://www.ctao.org/for-scientists/library/acknowledgments/</u>