Science with Einstein Telescope

Tomasz Bulik University of Warsaw

What is Einstein Telescope?

- 3rd generation gravitational wave observatory
- To be built underground
- Triangular configuration*
- 6 interferometers
- LF and HF

*) 2L also considered

Technoloav needed

- Cryogenics
- High power laser
- Heavy mirrors
- New mirror technologies
- Squeezed light

ET Pathfinder – Maastricht NL

Planned sensitivity

ET Collaboration

29 countries, 1730 members (yesterday

Cosmic Explorer

COSMIC

What do we want to achieve with the Einstein Telescope?

Compact object merger ranges

NS-NS 10⁴⁻⁵yr⁻¹

BH-BH 10⁵⁻⁶yr⁻¹

Completeness

BH BH

Dupletsa et al. 2023

Sky localization with ET

Network with CE

A few detections per day with localization better than 1 deg square!

Dupletsa et al. 2023

13

Black hole science

- Populations
 - PBHs, PopIII BHs,
 - Merger rate density as a function of redshift
 - Cosmology
- Precise waveform measurements
 - GR tests
 - Formation scenarios

GR tests

QNM analysis with very high accuracy

No hair theorem

Alternative theories

Exotic objects

Cosmology with standard sirens

- Energy emitted E ~ M
- Timescale of merger t ~ M
- Luminosity L= E/t ~ const
- In practice using the measured M_z and amplitude we obtain d_L
- Need a separate measurement of z:
 - from known(?) mass distribution
 - from EM observation
 - From statistical considerations

Cosmology with GW - now

Fig. 4. 3x3 arcminute images centered on NGC 4993 with North up and East left. (A) *Hubble Space Telescope* F606W-band (broad V) image from 4 months before the GW trigger (25, 35). (B) Swope image of SSS17a. The *i*-band image was obtained on 2017 August 17 at 23:33 UT by the Swope telescope at Las Campanas Observatory. SSS17a is marked with the red arrow. No object is present in the *Hubble* image at the position of SSS17a (25, 35).

Neutron Star Mergers

- Equation of state
- Multi-messenger studies
- Early warning on mergers
- GRB connection

Probing gravity at extremes

20

Dense matter parameter space

Pulsar population

Sensitivity in one year observation.

Bursts

Supernovae

Fast radio bursts

Magnetars

Many other

Ability to subtract binary foreground

Backgrounds

Three (x2) interfermeters, independent noise.

ET Science in a nutshell

ASTROPHYSICS

- Black hole properties
 - origin (stellar vs. primordial)
 - evolution, demography
- Neutron star properties
 - interior structure (QCD at ultra-high densities, exotic states of matter)
 - demography
- Multi-band and -messenger astronomy
 - joint GW/EM observations (GRB, kilonova,...)
 - multiband GW detection (LISA)
 - neutrinos
- Detection of new astrophysical sources
 - core collapse supernovae
 - isolated neutron stars
 - stochastic background of astrophysical origin

FUNDAMENTAL PHYSICS AND COSMOLOGY

- The nature of compact objects
 - near-horizon physics
 - tests of no-hair theorem
 - exotic compact objects
- Tests of General Relativity
 - post-Newtonian expansion
 - strong field regime
- Dark matter
 - primordial BHs
 - axion clouds, dark matter accreting on compact objects
- Dark energy and modifications of gravity on cosmological scales
 - dark energy equation of state
 - modified GW propagation

Stochastic cosmological backgrounds

• inflation, phase transitions, cosmic2strings

Timeline

GW sky few years ago

GW sky with Advanced detectors

GW sky with ET

Present and future GW astronomy

