
Andrea Tramacere

Open-Source Frameworks for Modelling of
Extragalactic Jets

RICAP 2024

JetSeT Relativistic jets modelling in the MW and MM era

data (photons + ν)
spec+pol.

Padovani+ 2017 Mrk 421

Magic coll. 2020 Mrk 421

bending

collimation and stratification

a complex phenomenology requires a flexible framework

• complex MW/MM patterns eg.
polarization / ν

• radio-gamma delays

• strong spectral evolution

• rapid variability, orphan flares

•emission at different scales across the
jet/stratification (eg. fast-spine/slow-
layer)

•interaction of several emitting regions

•disk-corona-wind

•leptonic and lepto-hadronic processes

•cooling/acc competition (pari-
production, FI+FII,mag rec.)

• we have large MW/MM data sets

• complex micro-physics simulations (e.g. PIC/MHD)

• still we miss the link between micro and macro (complex micro-
physics simulation still relies on phenomenological interpretation
missing the constraining power from observed data)

the requirements for an open source framework

Requirements for a framework to reproduce radiative and accelerative processes acting in relativistic jets, and galactic
objects (with/without jet), allowing to fit the numerical models to observed data.

open source

interoperability

solid workflow

reproducibility

robust
opt. cpu time

well documented

CI/CD

easy to install
conda,pip

allow to the user to
build complex models
basing on atomic tools

 in C/C++
(threaded)

interface in
python

• iminuit
• mcmc samplers
• gamma-py
• sherpa

plugins (bidirectional)
to third-party
frameworks

user-defined
plugins

• microquasars
• expanding jets
• functional-dependant

parameters

astropy-oriented

customizable

Model manager

Numerical engine

numerical
engine interface

model

parameters
(func. dep.)

analytical
templates

(1/2D)

time evolving
FP Eq.

radiative
synch,IC(SSC/EC/
CMB,BLR..), p/e

SED+pol.

light curves

model
container

third party models

model1

model 2

model 3

f(m1,m2,m3)

third party frameworks

EBL
galaxy
BBB

the ideal architecture for a model manager (obj oriented)

emitters (leptons/
hadrons)
geometry

current frameworks/codes

code approach sources processes IC emitters polarization temporal
evolution

emitting
region geom language c/c++ threads

GPU doc plugins install CI/CD

numerical PWN, SNR,
GRB

IC,EC, p-
synch

anιso,

e-,γ

leptons,
hadrons(pp) no no single spher. python no yes third-party+

user defined pip,conda yes

numerical
jetted AGN,
PWN,MQ,

SNR
SSC,EC,Bre

ms, pp ιso leptons,
hadrons(pp) no only cooling single spher. python

(C++) no yes no make file no(?)

numerical
jetted AGN,
PWN,MQ,

SNR
SSC,EC,Bre

ms, pp ιso leptons,
hadron(pp) yes

acc+cooling+

adb exp.

particles

multiple(
non-
inter.)

spher.

exp.
shell

conical

python

(C) C threads yes third-party+

user defined pip, conda yes

numerical jetted AGN SSC,EC, p-
synch anιso,γ

leptons

hadron(p-

synch)
no no single spher. python no yes third-party pip, conda yes

numerical

ray tracing SSC,synch ιso leptons no only adb,

cooling single spher/
radial

python

(C)

C threads

GPU yes third-party pip

yes

(missing
tests?)

numerical/
semi-analyt.

jetted AGN,
MQ ιso no single jet(?) python

(C++) no no no make file no

numerical jetted
AGN,TDE

SSC,EC,Bre
ms, ph ιso

leptons,
hadrons(pp+

pγ)
no

acc+cooling+

adb exp.

particle+phot.
single spher. python

(C++) no yes user defined make file yes

OK IMPROVE MISSING

current frameworks/codes

code approach sources processes IC emitters polarization temporal
evolution

emittin
g

region
geom language c/c++ threads

GPU doc plugins install CI/CD

numerical PWN, SNR,
GRB

IC,EC, p-
synch

anιso,

e-,γ

leptons,
hadrons(pp) no no single spher. python no yes third-party+

user defined pip,conda yes

numerical
jetted AGN,
PWN,MQ,

SNR
SSC,EC,Bre

ms, pp ιso leptons,
hadrons(pp) no only cooling single spher. python

(C++) no yes no make file no(?)

numerical
jetted AGN,
PWN,MQ,

SNR
SSC,EC,Bre

ms, pp ιso leptons,
hadron(pp) yes

acc+cooling+

adb exp.

particles

multipl
e(non-
inter.)

spher.

exp.
shell

conical

python

(C) C threads yes third-party+

user defined pip, conda yes

numerical jetted AGN SSC,EC, p-
synch anιso,γ

leptons

hadron(p-

synch)
no no single spher. python no yes third-party pip, conda yes

numerical

ray tracing SSC,synch ιso leptons no only adb,

cooling single spher/
radial

python

(C)

C threads

GPU yes third-party pip

yes

(missing
tests?)

numerical/
semi-analyt.

jetted AGN,
MQ ιso no single jet(?) python

(C++) no no no make file no

numerical jetted
AGN,TDE

SSC,EC,Bre
ms, ph ιso

leptons,
hadrons(pp+

pγ)
no

acc+cooling+

adb exp.

particle+phot.
single spher. python

(C++) no yes user defined make file yes

OK IMPROVE MISSING

Incompleteness
& 

Duplication

some examples from existing codes

an example of workflow

data phenomenology pre-fit model

interoperability: using model fitting plugins (jetset and agnpy example)

User customization: depending parameters

• parameters can be easily linked with functions

RH

R0,

B0

R(R0,RH)
B(m,R,B0)

• make emitting region size, and
B, depending on the jet
opening angle, SSC sensitive
to dissipation radius

User customization: model composition

• model con be easily combined using math expression

model
container

model1

model 2

model 3

f(m1,m2,m3)

User customization: internal plugins

•use internal processes
•add temporal evolution
•get evolved eq. model

TDE with AM3

https://am3.readthedocs.io/en/latest/examples/tde_example.html

User customization: internal plugins

Science 2021, 372, 1081–1085 H.E.S.S. Collaboration

https://github.com/Carlor87/GRBmodelling

GRB with naima

lepto-hadronic one-zone adb. exp. and cooling with AM3

https://am3.readthedocs.io/en/latest/examples/blazar_detailed_example.html

injection
base of the

jet

flaring site

Radiative
region (RR)

expanding site

R(t)R0

Rrad=R0

BH

Disk

Acc. region(AR
)

t
texpflare

Δr=texpβcΓ (obs rest frame)

radio-gamma delay: adb. exp. + cooling + acc.
RH

T days

A&A proofs: manuscript no. 42003_final_layout

Fig. 3: Left panel: SEDs corresponding to the simulation of the flaring state, for the radiative region. The dashed green line
corresponds to the earliest of the SEDs stored by the code, the blue lines correspond to the period when the injection, acceleration,
and radiative process are active, and the red lines correspond to the period when only the radiative processes are active. The times
reported in the label are in the blob frame. Right panel: Same as in left panel, but for the electron energy distribution in the radiative
region.

ning of the expansion (B0 and R0). Hence, we only extrapolate
the evolution of B according to mB and R(t) from the beginning
of the expansion process. We adopte this approximation for the
current approach because we are mostly interested in the deter-
mination of the radio-� response in terms of delay and expan-
sion velocity, and are not interested in investigating the jet struc-
ture before the flaring site. Nevertheless, our model can be easily
generalised to a generic conical jet geometry simply by replac-
ing the temporal law R(t) in order to follow the jet cross-section
as a function of the jet opening angle and of the distance from
the BH, setting a scaling parameter z(t) = RH(t)/RH0, and then
expressing R(t) = R0z(t)mR , and B(t) = B0z(t)�mBmR , where the
expansion index of the jet mR is assumed to be 2 [0, 1]. In the
ballistic case (mR = 1, Kaiser 2006) the initial opening angle of
the jet will be given by tan ✓0 = R0/RH0, and will change with
z according to tan (✓(z)) = tan (✓0)(RH(t)/RH0)mR�1, i.e. will be
constant.

Both for the flaring and long-term (expansion) simulations,
the time grid for the solution of the FP equation is tuned to have a
temporal mesh at least two orders of magnitude smaller than the
shortest cooling and acceleration timescale. We use an energy
grid with 1500 points and 1  �  108. As the total number of
time steps used in the FP numerical solution (Tsize) can be very
large, a subsample of the time steps of the simulation (NUMS ET)
is stored in arrays, and can be used to build both light curves and
SEDs. In the current simulation, we use NUMS ET = 200 for the
flaring stage and NUMS ET 2 [1000, 5000] for the long-term evo-
lution, depending on the duration of the simulation. This guar-
antees an adequate time sampling for light curves and spectral
evolution. SEDs are computed from the stored electron distribu-
tions, and from the blob parameters (according to their tempo-
ral evolution). In our case, the blob variable parameters are the
source radius (R) and magnetic field (B), which evolve accord-
ing to Equations 1 and 2, respectively. Light curves are obtained
by integrating SEDs between two frequencies, or as monochro-
matic. The code o↵ers the possibility to convolve the light curves
with the light-crossing time. In the present analysis, we skip this
option because, as shown in section 2, the light-crossing time
is always shorter than the other competing timescales. This ap-

proximation used in the current approach will be removed in a
forthcoming paper, where it will be treated accurately. We also
decided to use a constant bulk Lorentz factor. We tested and ver-
ified that, for the current scope of the simulations, the di↵erence
between enabling and disabling the IC cooling is negligible, and
therefore to speed up the computational time we use only syn-
chrotron cooling for the radiative terms.

3.2. Flare simulation

To generate the flaring event, we use the JetTimeEvol config-
uration with a separated acceleration and radiative region. With
this configuration, particles are injected into the acceleration re-
gion (AR), and then di↵used toward the radiative region (RR)
for a timescale corresponding to the flare duration. We set the
parameters for the flaring stage in order to reproduce the typi-
cal SED of HBLs, according to Tramacere et al. (2011). We as-
sume that both radiative and first and second-order acceleration
processes, occur in the AR, whilst in the RR region, we only
take cooling processes into account. Particles are injected in the
AR with a quasi-monoenergetic distribution, normalised accord-
ing to Equation 19. This initial distribution evolves under the
e↵ect of radiative and accelerative mechanisms, leading to the
formation of a distribution with a low-energy power-law branch
that bends close to the equilibrium energy. The high-energy
branch exhibits a log-parabolic shape during the acceleration-
dominated stage, and approaches a relativistic Maxwellian cut-
o↵ at the equilibrium. The spectral index of the low-energy
power law is dictated by the ratio of the first-order accelera-
tion timescale to the escape time from the acceleration region,
whilst the curvature during the acceleration-dominated stage is
dictated by the momentum di↵usion term. The acceleration re-
gion is modelled as a cylindrical shell with a radius equal to
the radiative region, and we assume a ten times smaller width.
Particles leaving the acceleration region (shock front) enter the
radiative region with a rate derived for the escape probability
Pescape(�tmesh) = 1�exp�tmesh/Tesc (Park & Petrosian 1996), where
�tmesh is the temporal mesh for the numerical solution of the FP

Article number, page 6 of 27

A&A proofs: manuscript no. 42003_final_layout

Fig. 3: Left panel: SEDs corresponding to the simulation of the flaring state, for the radiative region. The dashed green line
corresponds to the earliest of the SEDs stored by the code, the blue lines correspond to the period when the injection, acceleration,
and radiative process are active, and the red lines correspond to the period when only the radiative processes are active. The times
reported in the label are in the blob frame. Right panel: Same as in left panel, but for the electron energy distribution in the radiative
region.

ning of the expansion (B0 and R0). Hence, we only extrapolate
the evolution of B according to mB and R(t) from the beginning
of the expansion process. We adopte this approximation for the
current approach because we are mostly interested in the deter-
mination of the radio-� response in terms of delay and expan-
sion velocity, and are not interested in investigating the jet struc-
ture before the flaring site. Nevertheless, our model can be easily
generalised to a generic conical jet geometry simply by replac-
ing the temporal law R(t) in order to follow the jet cross-section
as a function of the jet opening angle and of the distance from
the BH, setting a scaling parameter z(t) = RH(t)/RH0, and then
expressing R(t) = R0z(t)mR , and B(t) = B0z(t)�mBmR , where the
expansion index of the jet mR is assumed to be 2 [0, 1]. In the
ballistic case (mR = 1, Kaiser 2006) the initial opening angle of
the jet will be given by tan ✓0 = R0/RH0, and will change with
z according to tan (✓(z)) = tan (✓0)(RH(t)/RH0)mR�1, i.e. will be
constant.

Both for the flaring and long-term (expansion) simulations,
the time grid for the solution of the FP equation is tuned to have a
temporal mesh at least two orders of magnitude smaller than the
shortest cooling and acceleration timescale. We use an energy
grid with 1500 points and 1  �  108. As the total number of
time steps used in the FP numerical solution (Tsize) can be very
large, a subsample of the time steps of the simulation (NUMS ET)
is stored in arrays, and can be used to build both light curves and
SEDs. In the current simulation, we use NUMS ET = 200 for the
flaring stage and NUMS ET 2 [1000, 5000] for the long-term evo-
lution, depending on the duration of the simulation. This guar-
antees an adequate time sampling for light curves and spectral
evolution. SEDs are computed from the stored electron distribu-
tions, and from the blob parameters (according to their tempo-
ral evolution). In our case, the blob variable parameters are the
source radius (R) and magnetic field (B), which evolve accord-
ing to Equations 1 and 2, respectively. Light curves are obtained
by integrating SEDs between two frequencies, or as monochro-
matic. The code o↵ers the possibility to convolve the light curves
with the light-crossing time. In the present analysis, we skip this
option because, as shown in section 2, the light-crossing time
is always shorter than the other competing timescales. This ap-

proximation used in the current approach will be removed in a
forthcoming paper, where it will be treated accurately. We also
decided to use a constant bulk Lorentz factor. We tested and ver-
ified that, for the current scope of the simulations, the di↵erence
between enabling and disabling the IC cooling is negligible, and
therefore to speed up the computational time we use only syn-
chrotron cooling for the radiative terms.

3.2. Flare simulation

To generate the flaring event, we use the JetTimeEvol config-
uration with a separated acceleration and radiative region. With
this configuration, particles are injected into the acceleration re-
gion (AR), and then di↵used toward the radiative region (RR)
for a timescale corresponding to the flare duration. We set the
parameters for the flaring stage in order to reproduce the typi-
cal SED of HBLs, according to Tramacere et al. (2011). We as-
sume that both radiative and first and second-order acceleration
processes, occur in the AR, whilst in the RR region, we only
take cooling processes into account. Particles are injected in the
AR with a quasi-monoenergetic distribution, normalised accord-
ing to Equation 19. This initial distribution evolves under the
e↵ect of radiative and accelerative mechanisms, leading to the
formation of a distribution with a low-energy power-law branch
that bends close to the equilibrium energy. The high-energy
branch exhibits a log-parabolic shape during the acceleration-
dominated stage, and approaches a relativistic Maxwellian cut-
o↵ at the equilibrium. The spectral index of the low-energy
power law is dictated by the ratio of the first-order accelera-
tion timescale to the escape time from the acceleration region,
whilst the curvature during the acceleration-dominated stage is
dictated by the momentum di↵usion term. The acceleration re-
gion is modelled as a cylindrical shell with a radius equal to
the radiative region, and we assume a ten times smaller width.
Particles leaving the acceleration region (shock front) enter the
radiative region with a rate derived for the escape probability
Pescape(�tmesh) = 1�exp�tmesh/Tesc (Park & Petrosian 1996), where
�tmesh is the temporal mesh for the numerical solution of the FP

Article number, page 6 of 27

A. Tramacere et al.: Radio-�-ray response in blazars as a signature of adiabatic blob expansion

Fig. 4: Comparison of non-expanding (right panels) vs expanding (left panels) for �exp = 0.1. The top panels show the evolution of
the SEDs after the flaring stage, where the blue colour indicates to the non/pre-expansion case, and orange indicates the expansion.
The second row of panels shows the evolution of the flux density (F⌫). The three bottom panels show the merged light curves of both
the flaring and the long-term simulation in the Fermi-LAT band, and at 5 and 40 GHz. The red dashed lines mark the light-curve
segment belonging to the flaring stage and the orange vertical dashed lines mark the beginning of the expansion.

equation. The radiative region is modelled with a spherical ge-
ometry, where only the cooling processes are active and where
we assume that particles are confined (Tesc � Duration). The po-
sition along the jet of the flaring region is placed at RH0 = 1017

cm. Particles are injected and accelerated in the AR for a dura-
tion equal to Duration acc. and equal to Duration inj., respec-
tively. The total time-span of the flare simulation is given by the
parameter Duration. The parameters for the acceleration and ra-
diative region are reported in Table 1.

3.3. Long-term simulation of the expanding radiative region

The long-term simulation is an extension of the flaring event
over a longer timescale, only for the RR, and without injection
or particle escape. The duration of the simulation for the long-
term evolution is estimated according to Tlong = �t⌫SSA(0)!⌫SSA(t)+

10 tdecay. We set the expansion time texp = 107 s, and we evaluate
ten realizations of the process, with �exp evaluated on a ten-point
logarithmic grid [0.001, 0.3] to evaluate the trends as a func-
tion of �exp. We realise a further simulation with �exp = 0.1 to
investigate the trends as a function of the radio frequency. The
parameters for the acceleration and radiative region are reported
in Table 2. We stress that the initial position of the flaring region

Article number, page 7 of 27

Tramacere+ 2022

JetSeT

• duration~3x107 s (blob frame)~ 11 d
obs

• texp=1x107 s
• βexp=0.1c

texp

flare expansion Tramacere+ 2022

JetSeT

adb exp video

https://www.youtube.com/watch?v=hwJcko1KOUU

z
zaccen

zaccstarzradiosta

acc

User customization: internal plugins

injectionacceleration
FI+FII

cooling

pre-accradio jet

Rodi,Tramacere+ ApJ2020

DiksIrrComp+Corona
Exp. Jet

MQ plugin with JetSeT

https://github.com/andreatramacere/mq_jet

JetSeT

Radiative
Processes

Emitters
Evolution

Multi-zone
Feedback

Emitting
Region Geom

C++ engine
Python int.

handles
parameters

combine
emitting regions

handles Emitters
Evolution

handles Emitting
Region Geom

Python int.

physical
library

Model  
Manager

• iminuit
• mcmc samplers
• gamma-py
• sherpa

plugins (bidirectional)
to third-party
frameworks

handles
different data

takes into
account RSP

Data Selection

Query to DB

Python int.

Data
Model

user-defined
plugins • microquasars

• expanding jets
• functional-dependant

parameters

the ideal framework: move from competition to cooperation

no/low duplication here! diversification is
possible, but…

something already
present in sherpa, gamma-py

and 3ML

most relevant todos
• feedback among multi-zone components, and raytracing (eg. synch self-abs in stratified geometries)

• disk models, mostly phenom. no actual connection to jet powering

• more interaction between GRB and Blazar communities (developed different expertises, but so far
walked on parallel patters), both deal with jets, even though within different scenarios, but systematic
differences might provide interesting orthogonal constraints

• customize geometry

• speedup computation time and solve degeneracy for time-evolved model fitting: AI does not solve the
problem:

• works only at equilibrium and is based on templates

• some black box in the middle

• for time-dependent parameters, the volume of the templates will become huge

• is not aware of the underlying physics, whilst frequentist/Bayesian methods get direct feedback on
how a model reacts to parameters changes based on the implemented physics, and according to
actual state of the system, AI template-based, is linking a finite combination of parameters/template
at the equilibrium, actually not following the impact of a parameter at given time

last but not the least

• scientist developing software, needs rewards, currently, metrics push toward
a purely competitive approach

• Publishers should favour/promote/push submitters to provide fully
reproducible modelling

