Open-Source Frameworks for Modelling of Extragalactic Jets

Andrea Tramacere

RICAP 2024

Relativistic jets modelling in the MW and MM era

Magic coll. 2020 Mrk 421

etSeT

collimation and stratification

a complex phenomenology requires a flexible framework

- complex MW/MM patterns eg. polarization / v
- radio-gamma delays
- strong spectral evolution
- rapid variability, orphan flares

- we have large MW/MM data sets
- complex micro-physics simulations (e.g. PIC/MHD)
- still we miss the link between micro and macro (complex microphysics simulation still relies on phenomenological interpretation missing the constraining power from observed data)

- •emission at different scales across the jet/stratification (eg. fast-spine/slowlayer)
- interaction of several emitting regions
- disk-corona-wind
- leptonic and lepto-hadronic processes
- cooling/acc competition (pariproduction, FI+FII, mag rec.)

the requirements for an open source framework

Requirements for a framework to reproduce radiative and accelerative processes acting in relativistic jets, and galactic objects (with/without jet), allowing to fit the numerical models to observed data.

the ideal architecture for a model manager (obj oriented)

current frameworks/codes

OK IMPROVE MISSING															
code	approach	sources	processes	IC	emitters	polarization	temporal evolution	emitting region	geom	language	c/c++ threads GPU	doc	plugins	install	
Python package for computation of non-thermal radiation from relativistic particle populations and MCMC fitting to observed spectra	numerical	PWN, SNR, GRB	IC,EC, p- synch	anıso, e-,γ	leptons, hadrons(pp)	no	NO	single	spher.	python	no	yes	third-party+ user defined	pip,conda	
GAMERA A C++/python library for source modeling in gamma astronomy	numerical	jetted AGN, PWN,MQ, SNR	SSC,EC,Bre ms, pp	ISO	leptons, hadrons(pp)	no	only cooling	single	spher.	python (C++)	no	yes	no	make file	
Jets SED modeler and fitting Tool	numerical	jetted AGN, PWN,MQ, SNR	SSC,EC,Bre ms, pp	ISO	leptons, hadron(pp)	yes	acc+cooling+ adb exp. particles	multiple(non- inter.)	spher. exp. shell conical	python (C)	C threads	yes	third-party+ user defined	pip, conda	
vF _v O AGNpy	numerical	jetted AGN	SSC,EC, p- synch	anıso,γ	leptons hadron(p- synch)	no	no	single	spher.	python	no	yes	third-party	pip, conda	
☆ flaremodel latest	numerical ray tracing		SSC,synch	ISO	leptons	no	only adb, cooling	single	spher/ radial	python (C)	C threads GPU	yes	third-party	pip	(
😯 BHJet	numerical/ semi-analyt.	jetted AGN, MQ		ISO		no		single	jet(?)	python (C++)	no	no	no	make file	
p p v	numerical	jetted AGN,TDE	SSC,EC,Bre ms, ph	ISO	leptons, hadrons(pp+ pγ)	no	acc+cooling+ adb exp. particle+phot.	single	spher.	python (C++)	no	yes	user defined	make file	

current frameworks/codes

OK	IMPROV	Έ	MISSING				
code	approach	sources	processes	IC	emitters	polarization	temp evolu
Python package for computation of non-thermal radiation from relativistic particle populations and MCMC fitting to observed spectra	numerical	PWN, SNR, GRB	IC,EC, p- synch	anıso, e-,γ	leptons, nation(pp)	:Ôľ	
GAMERA AC++/gython library for source modeling in gamma astronomy	numerical	jetted AGN, PWN,MQ, SNR	SSC,EC,Bre ms, pp	ISO	leptons, hadrons(pp)	no	only c
JetSeT Jets SED modeler and fitting Tool	numerical	jetted AGN, PWN,MQ, SNR	SSC,EC,Bre ms, pp	ISO	leptons, hadron(pp)	yes	acc+co adb parti
vF _v O AGNpy	numerical	jetted AGN	SSC,EC, p- synch	anıso,γ	leptons hadron(p- synch)	no	Pn
A flaremodel latest	numerical ray tracing		SSC,synch	ISO		no	only coo
BHJet	numerical/ semi-analyt.	jetted AGN, MQ		ISO		no	
p p v	numerical	jetted AGN,TDE	SSC,EC,Bre ms, ph	ISO	leptons, hadrons(pp+ pγ)	no	acc+co adb particle

some examples from existing codes

an example of workflow

interoperability: using model fitting plugins (jetset and agnpy example)

Jets SED modeler and fitting Tool

sherpa_model_jet=JetsetSherpaModel(prefit_jet) sherpa_model_gal=JetsetSherpaModel(my_shape.host_gal) sherpa_model_ebl=JetsetSherpaModel(ebl_franceschini)

jetset model name R renamed to R_sh due to sherpa internal naming convention

sherpa_model=(sherpa_model_jet+sherpa_model_gal)*sherpa_model_ebl

sherpa_model

▼ Model

Expression: (jet_leptonic + host_galaxy) * Franceschini_2008

Component	Parameter	Thawed	Value	Min	Мах	Units
	gmin	\checkmark	470.39174855643597	1.0	100000000.0	lorentz
	gmax	\checkmark	2310708.197406515	1.0	100000000000000000000000000000000000000	lorentz
	N	\checkmark	7.087120469822453	0.0	MAX	1 / cm3
	gamma0_log_parab	o√	10458.36315393129	1.0	100000000.0	lorentz
	S	\checkmark	2.2487867709713574	-10.0	10.0	
jet_leptonic	r	\checkmark	0.320557142636666	-15.0	15.0	
	R_sh	\checkmark	1.0569580559768326e+16	51000.0	1e+30	cm
	R_H	\checkmark	1e+17	0.0	MAX	cm
	В	\checkmark	0.0505	0.0	MAX	gauss
	beam_obj	\checkmark	25.0	0.0001	MAX	lorentz
	z_cosm	\checkmark	0.0336	0.0	MAX	
heat gelever	nuFnu_p_host	 Image: A second s	-10.062787651081644	-12.25412264109553	5-8.254122641095535	erg / (c
nost_galaxy	nu_scale	\checkmark	0.017307503006438463	-0.5	0.5	Hz
Franceschini_2008	z_cosm	 Image: A second s	0.0336	0.0	MAX	

sherpa_model_ebl.z_cosm = sherpa_model_jet.z_cosm

-factor* z-factor* -factor*

-factor*

cm2 s)

electron energy distribution n_e = BrokenPowerLaw(k=1e-8 * u.Unit("cm-3"), p1=2.02, p2=3.43, gamma_b=1e5, gamma_min=500, gamma_max=1e6, # initialise the Gammapy SpectralModel

ssc_model = SynchrotronSelfComptonModel(n_e, backend="gammapy")

ssc_model.parameters.to_table()

Table length=11										
type	name	value	unit	error	min	max	frozen	is_n		
str8	str15	float64	str1	int64	float64	float64	bool	I		
spectral	log10_k	-8.0000e+00		0.000e+00	-1.000e+01	1.000e+01	False	F		
spectral	p1	2.0200e+00		0.000e+00	1.000e+00	5.000e+00	False	F		
spectral	p2	3.4300e+00		0.000e+00	1.000e+00	5.000e+00	False	F		
spectral	log10_gamma_b	5.0000e+00		0.000e+00	2.000e+00	6.000e+00	False	F		
spectral	log10_gamma_min	2.6990e+00		0.000e+00	0.000e+00	4.000e+00	True	F		
spectral	log10_gamma_max	6.0000e+00		0.000e+00	4.000e+00	8.000e+00	True	F		
spectral	z	3.0800e-02		0.000e+00	1.000e-03	1.000e+01	True	F		
spectral	delta_D	1.8000e+01		0.000e+00	1.000e+00	1.000e+02	False	F		
spectral	log10_B	-1.3000e+00		0.000e+00	-4.000e+00	2.000e+00	False	F		
spectral	t_var	8.6400e+04	S	0.000e+00	1.000e+01	3.142e+07	True	F		
spectral	norm	1.0000e+00		0.000e+00	1.000e-01	1.000e+01	True			

•

User customization: depending parameters

Jets SED modeler and fitting Tool

fit_model.jet_leptonic.add_user_par(name='B0',units='G',val=1E3,val_min=0,val_max=None) fit_model.jet_leptonic.add_user_par(name='m_B', val=1, val_min=1, val_max=2) fit_model.jet_leptonic.parameters.R0.frozen=True fit_model.jet_leptonic.parameters.B0.frozen=True def par_func(R0,B0,R_H,m_B): return B0*np.power((R0/R_H),m_B)

return B0*np.power((R0/R_H),m_B)

Jets SED modeler and fitting Tool

model con be easily combined using math expression

composite_model.composite_expr='(jet_flaring + steady_jet) * Franceschini_2008'

User customization: model composition

User customization: internal plugins

TDE with AM3

•use internal processes add temporal evolution •get evolved eq. model

https://am3.readthedocs.io/en/latest/examples/tde example.html

2. Define a class for generating external photon spectra

In [2]:

```
class ExtPH:
    set_external_6_spec(Obs_time, radius, Elist, corrected_lu, timelist, Ebb)
    input: time in observer's frame, radius of the radiaton zone, energy array for external photon spectra,
           bolometric luminosity array, time array for luminosity, black body energy
   output: external photon rate spectra dN/dlogE/dt[cm^-3 s^-1]
    1.1.1
    Oclassmethod
    def BlackBodySpec(cls, Energy, Temp0): #in eV, return in arbitrary units, dn/dlnE
        theta = Energy / Temp0
        tt = np.array(np.exp(theta), dtype = float)
        np.clip(tt, 1e-50, 1e100)
        spec = 1 / (tt - 1)
        if hasattr(Energy, "__len__"):
            spec[spec < 1e-20] = 0
        return spec * Energy**2
    Oclassmethod
    def set_external_G_spec(cls, Obs_time, radius, Elist, corrected_lu, timelist, Ebb):
        IntegralFlux = linear_interpolation(Obs_time, timelist, corrected_lu)
        EnergyUp = Ebb * 1e6
        EnergyLow = Ebb / 1e6
        dLogE = np.log(EnergyUp / EnergyLow) / 200
        EnergyList = np.exp(np.arange(np.log(EnergyLow), np.log(EnergyUp), dLogE))
        dEnergy = EnergyList * np.exp(dLogE) - EnergyList
        integral = sum(dEnergy * cls.BlackBodySpec(EnergyList, Ebb))
        return IntegralFlux / integral * cls.BlackBodySpec(Elist/(1+redshift), Ebb) / (4*np.pi/3*radius**3) * erg2GeV * 1e9/3
def linear_interpolation(x, index_array, interp_array):
    1.1.1
    1D linear interpolation
    input: x, x-array, y-array
   length = len(index_array)
    if len(index_array) != len(interp_array):
        print ("Interpolation error!")
        return 🖸
    elif (x < index_array[0]) or x > (index_array[length-1]):
        return 6
    else:
        for i in range(length-1):
           if x <= index_array[i+1] and x >= index_array[i]:
                return interp_array[i] + (interp_array[i+1] - interp_array[i])/(index_array[i+1] - index_array[i]) * (x - index_array[i])
```

naima

Python package for computation of non-therma diation from relativistic particle populations and MCMC fitting to observed spectra

User customization: internal plugins

https://github.com/Carlor87/GRBmodelling

Science 2021, 372, 1081–1085 H.E.S.S. Collaboration

```
import numpy as np
import matplotlib.pyplot as plt
from astropy.table import Table,hstack
import astropy.units as u
from astropy.io import ascii
import naima
from grbloader import *
```

and in the last line we import our GRB class.

After this we set some physical parameters, we read the datapoints and create an astropy table for them with the following:

```
Eiso = 8e53 # erg
density = 0.5 # cm-3
redshift = 0.4245
tstart = 68
             # S
tstop = 110  # s
tab = ascii.read("magic_int1_points.txt")
newt = Table([tab['energy'], tab['flux'], tab['flux_hi']-tab['flux'], tab['flux_lo
            names=['energy', 'flux', 'flux_error_hi', 'flux_error_lo'])
```

Now we have all that is needed to initialise the GRB class and this is done with

```
magicgrb = GRBModelling(Eiso, density, [newt], tstart, tstop, redshift,
                       [np.log10(0.07), -1.53, 2.87, 0.45, 0.01],
                       ['log10(eta_e)', 'log10(Ebreak)', 'Index2', 'log10(Ec)', 'log10(B)'],
                        scenario='ISM',
                       cooling_constrain=False)
```

GRB with naima

lepto-hadronic one-zone adb. exp. and cooling with AM3

https://am3.readthedocs.io/en/latest/examples/blazar_detailed_example.html

 $\overline{}$

(erg

<u>adb exp video</u>

Rodi, Tramacere+ ApJ2020

https://github.com/andreatramacere/mq_jet

etSeT

the ideal framework: move from competition to cooperation

no/low duplication here!

most relevant todos

- feedback among multi-zone components, and raytracing (eg. synch self-abs in stratified geometries)
- disk models, mostly phenom. no actual connection to jet powering
- more interaction between GRB and Blazar communities (developed different expertises, but so far walked on parallel patters), both deal with jets, even though within different scenarios, but systematic differences might provide interesting orthogonal constraints
- customize geometry
- speedup computation time and solve degeneracy for time-evolved model fitting: AI does not solve the problem:
 - works only at equilibrium and is based on templates
 - some black box in the middle
 - for time-dependent parameters, the volume of the templates will become huge
 - is not aware of the underlying physics, whilst frequentist/Bayesian methods get direct feedback on how a model reacts to parameters changes based on the implemented physics, and according to actual state of the system, AI template-based, is linking a finite combination of parameters/template at the equilibrium, actually not following the impact of a parameter at given time

- scientist developing software, needs rewards, currently, metrics push toward a purely competitive approach
- Publishers should favour/promote/push submitters to provide fully reproducible modelling

last but not the least