

FlashCam: A high-performance camera for IACTs

C. Escañuela Nieves for the FlashCam Team Max Planck Institute for Nuclear Physics, Heidelberg

26th September 2024, RICAP24, Roma, Italia

- Overview of design and architecture
- Performance in the laboratory
- FlashCam verification and physics operation in HESS
- FlashCam towards the future

FlashCam: Characteristics and properties

- 7.7° FoV
- 1764 PMTs in groups of 12, Photon Detector Plane (PDP)
- Dynamic range up to ~3000 p.e.
- Continuous digitisation with 250 MS/s
- Fully digital trigger and readout
- Dead-time free trigger rate >20kHz
- ~4 kW power consumption

Fully equipped camera in the lab

C. Escañuela Nieves, 26th Sept. 2024, RICAP24

FlashCam trigger very well understood and consistent with simulations

Measurements were conducted in the laboratory using a fully assembled camera with both 7- and 8-dynode PMTs and multiple NSB levels

Charge resolution better than requirements

7

FlashCam installation in HESS CT5

First measurements with FlashCam CT5

4 October: Camera arrival on site22-23 October: First gamma-ray sky map

C. Escañuela Nieves, 26th Sept. 2024, RICAP24

Flash

FlashCam in HESS Namibia: Long-term operation experience and verification

- Smooth physics operation in Namibia since Fall 2019, with > 98 % availability
- Little maintenance and repair effort
 - FlashCam team not needed in Namibia since 2019
- Good and well-understood performance
- Simulation-data consistency checks
- Publications and scientific achievements: e.g. Rs Ophiuchi (Science), Crab (A&A)

Flash

FlashCam HESS: Simulation-to-data consistency and long-term stability

Flash

Science verification in HESS – Crab Nebula

- A second FlashCam is fully equipped at MPIK
- Minor changes to further improve producibility, reproducibility, maintenance, and monitoring
 - Mechanics: Earthquake analysis
 - PDP modules and power slow control box
- Preparing for a pathfinder in Chile
 - Muon detection to calibrate full detector
 - Integration and migration of the analysis chain

Flash

Muon tagging – Why?

- Muons provide an ideal tool for the continuous calibration of IACTs
- Muons appear as distinct ring-shaped patterns in the camera, spreading over a larger area compared to low-energy showers and triggering more pixels
- Fast online muon detection is essential due to the high event rate

Muon tagging – How do rings form?

Basics of the trigger system

- Triggered card: card of 192 pixels (16 PDPs) which contain at least 1 triggered patch (maximum of 12 cards)
- Triggered patch: 3-pixel patches digital sum which exceed a threshold (maximum of 588 patches)

C. Escañuela Nieves, 26th Sept. 2024, RICAP24

C. Escañuela Nieves, 26th Sept. 2024, RICAP24

High muon detection efficiencies of >95%

Flash

- Two fully equipped cameras: in HESS and in the lab
- Long-term (~5 years) verification in HESS
- Important science contributions to HESS
- Minor changes towards a pathfinder in Chile and optimization of analysis chain