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• Reconstruction of  vertices from Oxygen interactions in Section 1 (S1) 

• Charge measurement in Section 2 (S2)  

• Momentum measurement in Section 3 (S3) [see G. Lorusso’s talk]



Reconstruction	improvements
-	MC	description	of	detector	response	(“MC	Reco”)	
-	Merging	procedure	between	different	sections	

-	Vertices	reconstruction	
-	Procedure	to	attach	unconnected	tracks	in	S2	to	vertices	



Improvements of  detector response in MC description (“MC Reco”)

•Efficiencies for cross section measurement is 
obtained comparing True and Reconstructed 
Monte Carlo 

•Reconstructed Monte Carlo has to reproduce 
detector response 

•Effects already present: 
• angle smearing 
• data-driven inefficiencies 
• data-driven random background 

•Effects added: 
•misalignments 
• data-driven long cosmic rays background



Background in Monte Carlo Simulation

•Before and after brick assembling nuclear emulsions are are are piled up without passive 
material in a different order with respect to the brick one. The segments due to the cosmic 
rays integrated during this period, therefore, should not form any track, apart from 
combinatorial associations (tracks 2 or 3 segments long).

Beam

Passive material not to scale

•Nuclear emulsions integrate cosmic rays since their production up to their development
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Background in Monte Carlo Simulation

•When the brick is assembled, it integrates cosmic rays that are then reconstructed as long 
tracks. These could mimic a vertex or be associated to a true vertex if they’re reconstructed as 
more than one track 

•Basetracks belonging to cosmic rays tagged from S2 Charge identification analysis in DATA 
are “copied” in MC Reco

Beam

•Nuclear emulsions integrate cosmic rays since their production up to their development

Passive material not to scale

• Penetrating cosmic rays now included in MC Reco simulation



Background in Monte Carlo Simulation

•When the brick is assembled, it integrates cosmic rays that are then reconstructed as long 
tracks. These could mimic a vertex or be associated to a true vertex if they’re reconstructed as 
more than one track 

•Basetracks belonging to cosmic rays tagged from S2 Charge identification analysis in DATA 
are “copied” in MC Reco

Beam

•Nuclear emulsions integrate cosmic rays since their production up to their development

Passive material not to scale

• Penetrating cosmic rays now included in MC Reco simulation

Not added because it is not 
tagged as Cosmic Ray in S2



Background in Monte Carlo Simulation
•Nuclear emulsions integrate cosmic rays since their production up to their development
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Nuclear emulsion films alignment
•STEP 1: align couples of  consecutive plates (~3 interactions with more 
stringent parameters)



Nuclear emulsion films alignment

•Residual (small) misalignment are present in the global reconstruction 
•STEP 2: re-alignment of  the whole stack, taking into consideration long 
tracks to improve the global alignment 
•Final tracks reconstruction



Misaligments in MC Reco
• Introduction of  a smearing on X and Y positions that reproduces the residual misalignments: 

• 5 micron in all stacks with exception of  S2 
• 2 micron in S2 (no passive material) 

•Re-alignment procedure (step 2)

EXAMPLE TAKEN FROM GSI2 DATA

•Future plan: understand if  it possible to introduce systematic shifts between plates 
(needed?)



Merging procedure between different sections
• Each section is characterised by its own parameters (material density, thickness…): tracking algorithm 

applied to each section separately  Different reference systems for each section→
•Optimised procedure to put tracks in the same reference system  
• Improved final XY shift + rotation to correct the offsets

EXAMPLE TAKEN FROM GSI3 DATA S1→S2
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Merging procedure between different sections

•Application to all stacks (S1-S7) for the first time

EXAMPLE TAKEN FROM GSI3 DATA S5→S6
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Before corrections
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⇒

After corrections



Tracks connections 

•New algorithm to connect tracks once they are in the same reference system

EXAMPLE TAKEN FROM GSI3

Higher	Background	in	DATA

Good	efficiency	for	long	tracks



Merging procedure between different sections

EXAMPLE OF LONG TRACKS (NSEG>100) TAKEN FROM GSI3 DATA



Vertices reconstruction

•New vertexing procedure to give a higher score to vertices with longer tracks

EXAMPLE TAKEN FROM GSI3
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Procedure to attach unconnected tracks in S2 to vertices
•Analysis on tracks arriving in the first plate of  S2 not connected to vertices 
•Evaluation of  impact parameter and distances between their projection at vertices Z 
•Attaching the track if  cuts are satisfied

S1 S1
(not	in	scale)

• ~ hundreds tracks recovered



Data	analysis
-	GSI1:	Oxy@200	MeV/n	on	C	target	

-	GSI2:	Oxy@200	MeV/n	on	C2H4	target



1 1.5 2 2.5 3 3.5 4 4.5 5
 Charge

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

 e
nt

rie
s Carbon MC RECO

#Entries: 8121
Mean: 1.666
RMS: 0.826
Carbon DATA
#Entries: 6412
Mean: 1.682
RMS: 0.814

Charge for tracks arriving in S2
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OLD - GSI2: Oxy@200 MeV/n on C2H4 target

Distributions	normalised	to	beam	particles

MC	RECO	vs	DATAMC	TRUE	vs	MC	RECO

Fragment’s	charge
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GSI2: Oxy@200 MeV/n on C2H4 target

Distributions	normalised	to	beam	particles

MC	RECO	vs	DATAMC	TRUE	vs	MC	RECO
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GSI2: Oxy@200 MeV/n on C2H4 target

Distributions	normalised	to	beam	particles

MC	RECO	vs	DATAMC	TRUE	vs	MC	RECO

Fragment’s	charge	(misalignment	in	MC	Reco)
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GSI1: Oxy@200 MeV/n on C target

Distributions	normalised	to	beam	particles

MC	RECO	vs	DATAMC	TRUE	vs	MC	RECO
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GSI1: Oxy@200 MeV/n on C target

Distributions	normalised	to	beam	particles

MC	RECO	vs	DATAMC	TRUE	vs	MC	RECO
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Cross	section	evaluation



One detector… many measurements!
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•The energy loss within S1 is not negligible 
•We can divide S1 into sub-sections of  5 layers and obtain many 
measurements in different energy ranges!
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Cross Section Measurement

 
dσ(x)
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The problem of   evaluationNB

•Each passive material layer can be considered 
a “new measurement” 
•The number of  incident beam particle on 

each layer has to be evaluated and is affected 
by its efficiency 
•New approach: estimation from oxygen tracks

dσ(x)
dx

C or C2H4

=
Yi(x)

NBNTGΔxϵi
reco(x)

NB1
NB2

NB3



The problem of   evaluationNB
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•Oxygen: tracks with  rad 
•Missing basetracks in a track filled to recover inefficiencies  
•Fit of  all bins that do not have a higher bin afterwards 
•  of  a specific film evaluated from the fit

tan θ ≤ 0.03

NB



Integrated cross section Oxy@200MeV/n
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New	paper!
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New paper almost ready!

•New article on charge 
evaluation in S2 for all GSI2019 
data takings 
• Article already reviewed by the 

EB 
• Almost ready to be shared with 

the collaboration (next week)



•Several improvements on: 

•MC description of  detector response (“MC Reco”): long cosmic rays + misalignments 

•Merging procedure between different sections 

•Vertices reconstruction 

•Procedure to attach unconnected tracks in S2 to vertices 

Oxygen @ 200 MeV/n  

•Comparison between MC True, MC Reco and DATA improved 

•New estimation of  the number of  incoming oxygens in each S1 “sub-section” 

•Cross section evaluation at different energies 

Oxygen @ 400 MeV/n  

•Analysis on C target (GSI3) on-going: bad quality emulsions 

•Analysis on C2H4 target (GSI4) just started 

•New paper almost ready on charge measurement for all GSI2019 bricks

Conclusions





BACK	UP	SLIDES



Detector Structure
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Section I Section II Section III

Beam


