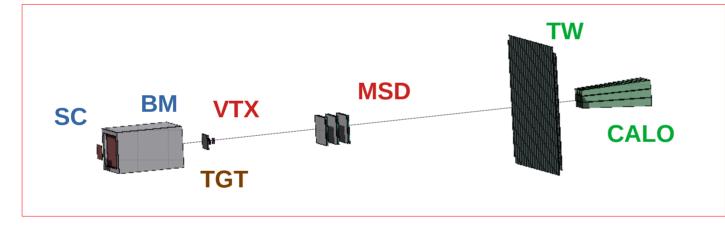
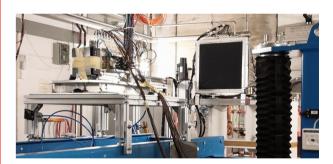


Vertex Track Perfomance Studies


Giacomo Ubaldi


XIV FOOT Collaboration Meeting

Bergamo

06/06/2023

- Performance studies applied on MC GSI 2021 campain
- Data-taking at GSI (Darmstadt, Germany) in 2021
- 16O 400 MeV/u on 5 mm C target
- Partial setup: no magnet, only one module of calorimeter

Definitions for performance factors

• Reference set: N_{reference} (truth side)

all the tracks that an algorithm performing ideally should find and reconstruct:

- all the tracks associated to a MC particle that crosses the FOOT apparatus at least until the last plane of the vertex (using MCRegion)
 - beam
 - primary fragment generated in the target
- Good reconstructed set: NGoodReco

all the tracks that are reconstructed by the tracking algorithm which are associated to MCparticles in the reference set .

• Bad reconstructed set: NBadReco

all the tracks that are reconstructed by the tracking algorithm but associated to MC particle that do not belong to the reference set.

Track reconstruction

For the track reconstruction I considered: **case 1**: a track is reconstructed with 4 clusters (one for each VT plane) **case 2**: a track is reconstructed with at least 3 clusters **case 3**: a track is reconstructed with at least 3 clusters + random noise pixels are generated

NB:

To associate a MC Particle to a reconstructed track:

- I consider the MC ID of all the clusters belonging to the track
- I take the most frequent one: this is the ID of the MC Particle matched

• Reconstruction efficiency:

eff 0.98 0.96 0.94 0.92 0.9 0.88 0.86 0.84 0.82 8 Ζ

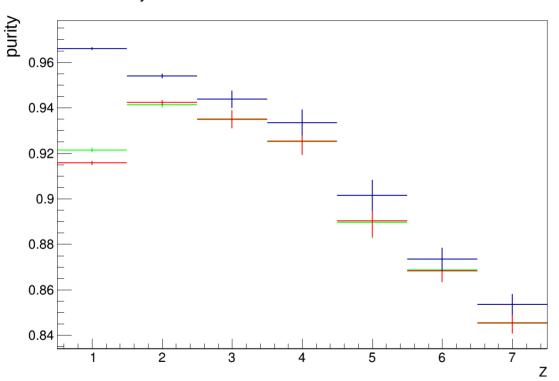
Efficiency of reconstructed tracks

 $\epsilon_{track}(Z) = rac{N_{GoodReco}(Z)}{N_{reference}(Z)}$

tracks with 4 clusters (case 1) tracks with >=3 clusters (case 2) tracks with >= 3 clus + noise (case 3)

FIRST vertex efficiency:

Table 2


Tracking efficiencies and associated errors for different charge values of detected particles (simulated data).

Z	1	2	3	4	5	6
Efficiency (%)	93.6	88.9	97.5	97.7	98.8	99.9
Error (%)	0.3	0.6	0.7	0.8	0.4	0.1

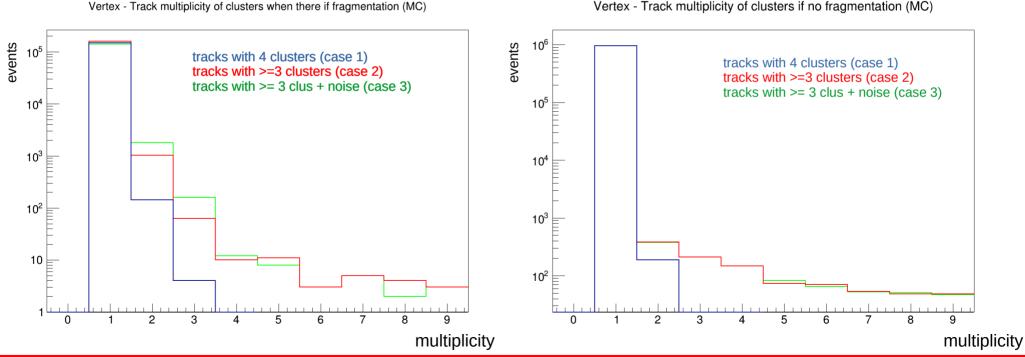
Nuclear Instruments and Methods in Physics Research A 767 (2014) 34-40

• elemental efficiency higher than 0.9 for $Z \ge 2$, close to 1 for $Z \ge 3$

• Purity:

Purity of reconstructed tracks out of the selected ones

$$p_{track}(Z) = rac{N_{GoodReco}(Z)}{N_{GoodReco}(Z) + N_{BadReco}(Z)}$$

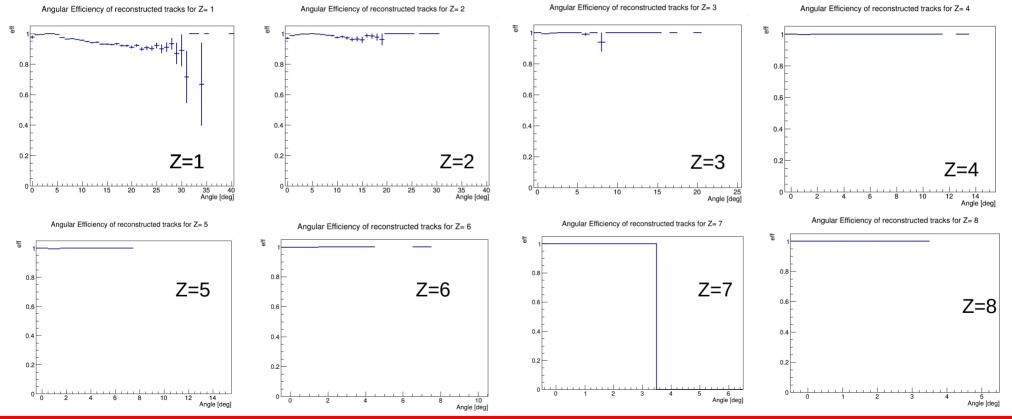

tracks with 4 clusters (case 1) tracks with >=3 clusters (case 2) tracks with >= 3 clus + noise (case 3)

• elemental purity higher than 0.8, it decreases with heavier Z

Multiplicity: n° of different clusters MC ID associated to a given track •

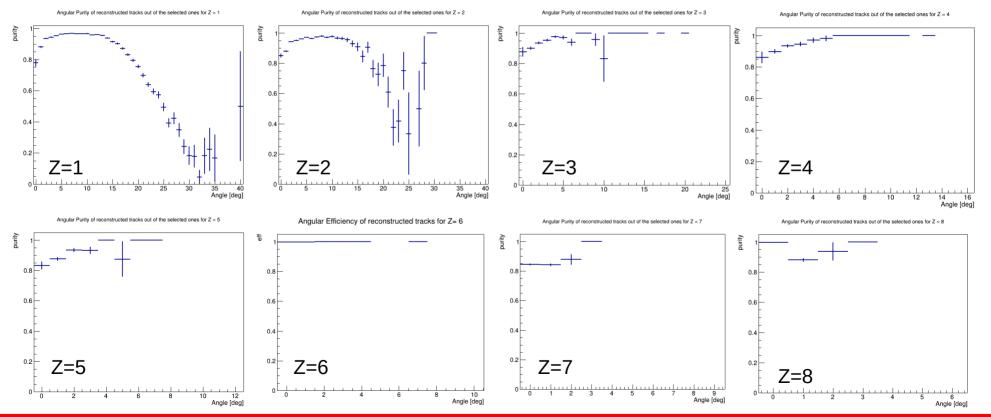
- es: m=1 all clusters are of the same MC particle
- es: m=2 clusters belong to two different MC particle (1-3,2-2)

NB: multiplicity can be higher than 4 (despite the clusters are at max 4) because every one can be associated to different MC particles (with different MC ID)


Vertex - Track multiplicity of clusters if no fragmentation (MC)

• Angular efficiency:

tracks with >= 3 clus + noise (case 3)


 $\epsilon_{track}(Z, heta) = rac{N_{GoodReco}(Z, heta)}{N_{reference}(Z, heta)}$

angular efficiency decreases with angle > 10°

- Angular Purity: tracks with >= 3 clus + noise (case 3)
- $p_{track}(Z, heta) = rac{N_{GoodReco}(Z, heta)}{N_{GoodReco}(Z, heta) + N_{BadReco}(Z, heta)}$

angular efficiency decreases with angle $> 10^{\circ}$ ٠

Resolution Measurements

Track Polar Resolution

$res_{ heta} = heta_{track} - heta_{MCparticle}$ Polar angle resolution of the reconstructed track vs the mc particle: Vertex - theta track resolution for Z= 3 Vertex - theta track resolution for Z= 2 Vertex - theta track resolution for Z= 1 vtTrackThetaRes3 vtTrackThetaRes2 vtTrackThetaRes1 450 Entries Entries 2695 70505 Entries 30683 4500 8000 F 0.002207 Mean Mean Mean 0.001012 0.001822 400 4000 Std Dev 0.05652 7000 Std Dev 0.03359 Std Dev 0 02547 350 χ^2 / ndf 4933 / 81 3500 F γ^2 / ndf 618.5 / 131 χ^2 / ndf 31.29/24 Prob 6000 n 300 3000 4629 ± 34.7 Constant 7504 ± 42.6 Constant 0.1455 Prob 5000 0.001974 ± 0.000135 Mean Mean 0.001784 ± 0.000149 250 455.1 ± 11.3 2500 F Constant Sigma 0.03451 ± 0.00014 4000 Sigma 0.02589 ± 0.00012 200 Mean 0.001121 ± 0.000453 2000 F 3000 Sigma 0.02333 ± 0.00036 150 1500 2000 100 1000F 7=2 7=3 7=1 1000 50 500 F 0.3 -04 -0.3-0.2-0.1 0 0 1 0.2 -0.2 0.1 0.2 0.3 0.4 -0.1 0.1 -0.3-0.10 04 -0.3-0.20 0.2 0.3 0.4 res [°] res [°] res [°] Vertex - theta track resolution for Z= 8 Vertex - theta track resolution for Z= 6 Vertex - theta track resolution for Z= 7 ×10³ vtTrackThetaBes8 vtTrackThetaRes6 vtTrackThetaRes7 700 F 715305 Entries 500 Mean 0.003844 Entries 2934 Entries 3741 120 Std Dev 0.02407 600 0.0009032 0.001311 Mean Mean 0.02524 0.02397 400 Std Dev Std Dev 100 500 χ^2 / ndf χ^2 / ndf 28.42/22 37.13/24 80 Prob 0.1621 400 Prob 0.04251 300 Constant 503.6 ± 12.0 Constant 650.1±13.6 300 60 Mean 0.0008206 ± 0.0004287 Mear 0.001293 ± 0.000374 200 Sigma 0.02303 ± 0.00035 Sigma 0.02273 ± 0.00029 200 **σ~0.02°** 40 100

7=7

0.3

0.4

res [°]

20

-0.3

-0.2

-0.1

0

res [°]

0.4

7=6

0.3

-0.3

-0.2

-0.1

0

0.1

0.2

100

-0.3

-0.2

-0.1

0

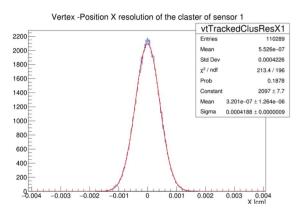
0.1

0.2

res [°] 11

Z=8

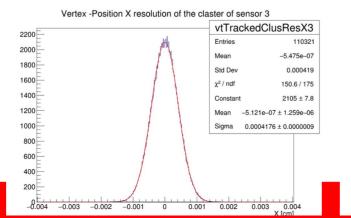
0.3

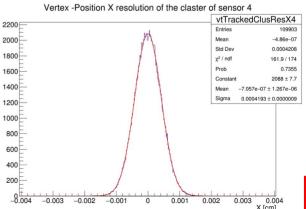

0.4

0.2

0.1

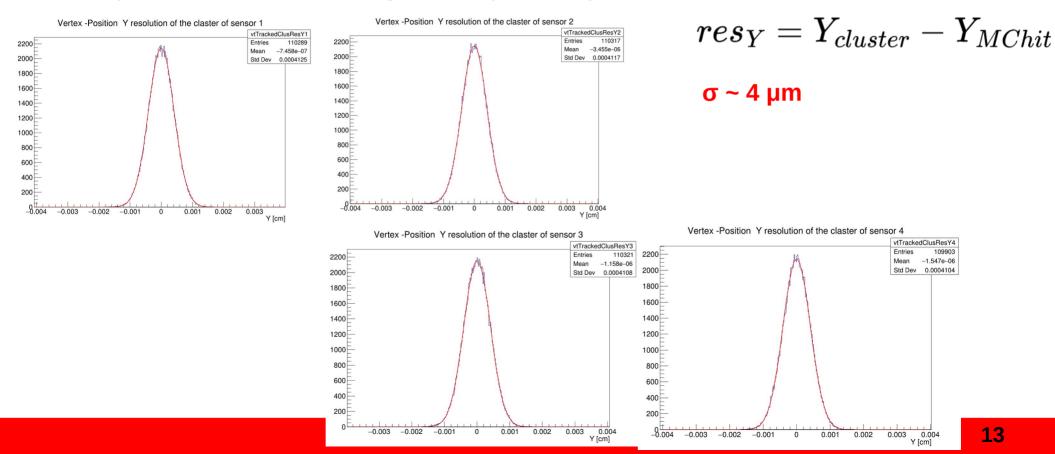
Track – Cluster position Resolution


Position resolution of the reconstructed cluster of a track vs the MC Hit (from which the cluster is generated) for every sensor of the vertex in X and Y



$$res_X = X_{cluster} - X_{MChit}$$

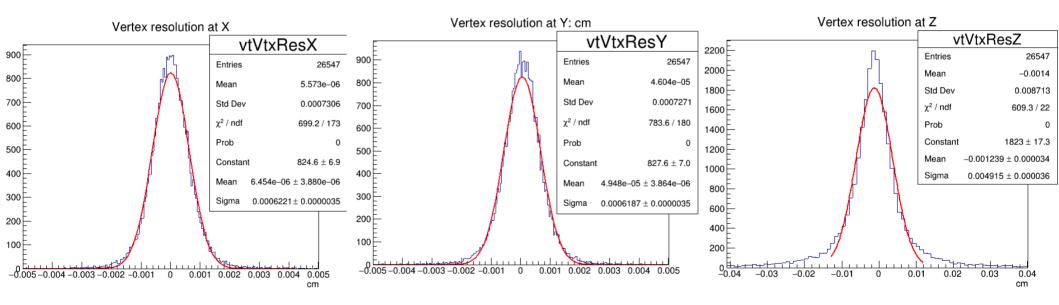
σ ~ 4 μm



12

Track – Cluster position Resolution

Position resolution of the reconstructed cluster of a track vs the MC Hit (from which the cluster is generated) for every sensor of the vertex in X and Y


Vertex position Resolution

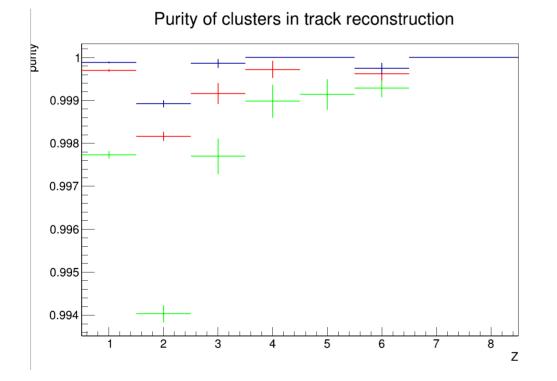
Position resolution of the reconstructed vertex of tracks vs the MC fragmentation position

 $res_X = X_{vtx} - X_{MC}$ $\sigma \sim 6 \, \mu m$

$$res_Y = Y_{vtx} - Y_{MC}$$
o ~ 6 µm

$$res_Z = Z_{vtx} - Z_{MC}$$
o ~ 50 µm

Conclusions

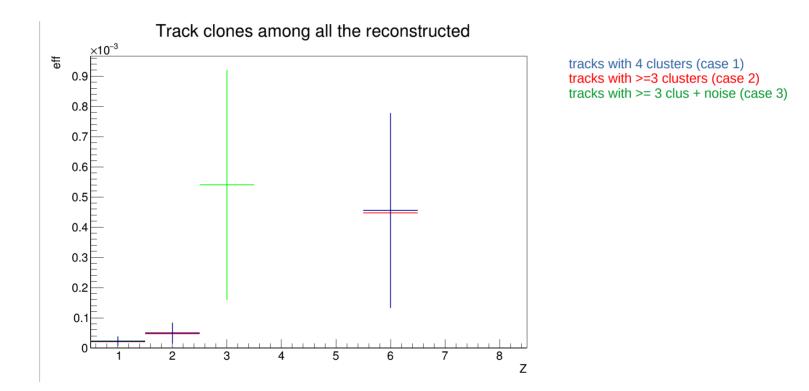

- Good efficiencies over ~90% and purities over ~80%
- Spatial resolution at the order of $\sim \mu m$
- good vertex identification, fundamental for out of target fragmentation removal
- performances in agreement with already published results.
- Performance studies to be run on every campaign

Thanks to Marco and Chris for the assistance and help!

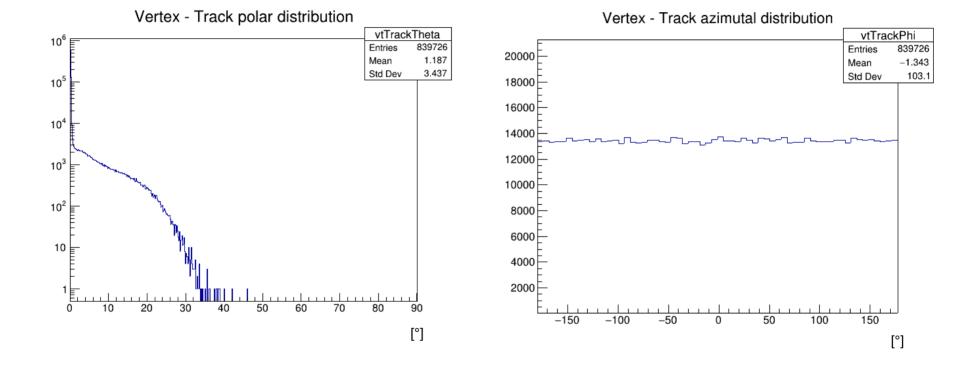
• Cluster purity

counts of all the clusters matched well with the track MC_ID (in reference set) among all clusters of all $N_{\mbox{GoodReco}}$ tracks

$$\rho = \frac{\sum_{m=0}^{M} N_{correct}^{(m)}}{\sum_{m=0}^{M} N_{total}^{(m)}}$$



tracks with 4 clusters (case 1) tracks with >=3 clusters (case 2) tracks with >= 3 clus + noise (case 3)


Definitions for performance factors

Clone multiplicity

quantification of the number of multiple cloned trajectories produced for the same MC particle matched to the track

Vertex track angular distribution

19

efficiency resolution

• I consider the selection of an event of a given Z and theta as distributed with a binomial distribution

$$P(N_{sel}|N_{tot},\epsilon) = B(n; N_{tot},\epsilon)$$

- A good estimator of the efficiency is $\hat{\epsilon} = \frac{N_{sel}}{N_{tot}}$
- The associated error is

$$\sigma_{\hat{\epsilon}}^2 = V[\hat{\epsilon}] = V[\frac{N_{sel}}{N_{tot}}] = \frac{V[N_{sel}]}{N_{tot}^2} = \frac{N_{tot}\epsilon(1-\epsilon)}{N_{tot}^2}$$
$$\sigma_{\hat{\epsilon}} = \sqrt{\frac{\epsilon(1-\epsilon)}{N_{tot}}}$$

then

N reference

- Reference set: N_{reference} (truth side) all the tracks that an algorithm performing ideally should find and reconstruct:
 - all the tracks associated to a MC particle that crosses the FOOT apparatus at least until the last plane of the vertex (using MCRegion)
 - beam
 - primary fragment generated in the target