

A. Alexandrov, T. Asada, <u>V. Boccia</u>, N. D'Ambrosio, A. Di Crescenzo, G. De Lellis, G. Galati, A. Iuliano, A. Lauria, G. Lorusso, M.C. Montesi, V. Tioukov

<u>Università di Napoli "Federico II", INFN Napoli</u> Università di Bari "Aldo Moro", INFN Bari INFN LNGS

05/06/2023, XIV FOOT General Meeting, Bergamo

PRIN Proposal Approved!

Project title: DAMON: Direct meAsureMent of target fragmentatiON

Coordinator: GALATI Giuliana ERC: PE2_6

University: Università degli Studi di BARI ALDO MORO

nº	Associated Investigator	Qualification	University/ Research Institution
1.	GALATI Giuliana	Ricercatore a t.d t.pieno (art. 24 c.3-a L. 240/10)	Università degli Studi di BARI ALDO MORO
2.	LAURIA Adele	Professore Associato (L. 240/10)	Università degli Studi di Napoli Federico II
3.	D'AMBROSIO Nicola	Dirigente tecnologo	Istituto Nazionale di Fisica Nucleare

Direct Measurement of Target Fragmentation

- The goal of the project is the *direct* measurement of target fragments produced by a proton beam
- Nano Imaging Trackers (NIT) emulsions act both as target and tracking devices
- Each NIT film has two sensitive layers (40 µm thick) deposited on both sides of a plastic support (200 µm thick)

 $\sim 200 \mu m$ $\sim 40 \mu m$

Data Taking in Trento

- 19 NIT films (~ 6.4x4 cm²) for the brick, 1 film for sensitivity tests
- Fixed pencil beam @211 MeV (FWHM ~ 1.5 mm)
- 230 cm from beam exit window
- 6x4 grid for a uniform exposure of the NIT emulsions (about 11.000 protons per spot)

Data Taking in Trento

- The distance from the beam exit window was optimized to achieve a uniform exposure of the brick with TOPAS simulations
- Goal: 10.000 protons/cm²
- First spot with about 85.500 protons instead of 11.000
- Two spots (20.000 and 40.000 protons) for sensitivity tests

First Scanning Tests

- A preliminary scan was performed in LNGS on the top side of R1-2
- 100x100 views, each view being 50 μm x 70 μm
- Assuming a fluence of 10.000 protons/cm² about 3500 primaries are expected (about 1 in every 30 views)

Micro-track Reconstruction

- Once grains are reconstructed, the linking procedure takes place
- The scan performed @LNGS was used to optimize the parameters for the linking algorithm
- Among the parameters:
 - Minimum Number of grains = 2
 - Maximum kink angle between grains = 0.8 radians
 - Maximum linking distance = 5 µm

6

Micro-track Reconstruction

- A score can be given to each microtrack: $Score = -\log(\langle gap \rangle \cdot \langle kink \rangle)$
- Cuts on the score and the number of grains identify the best microtracks
 - At least 10 grains, score > 0.75 ($\langle gap \rangle \sim 1 \ \mu m$ and $\langle kink \rangle \sim 30^{\circ}$)
- The horizontal micro-tracks are closer to the surfaces and they in part due to scratches
- The vertical micro-tracks are less than expected

Microscope Upgrades

• Target fragmentation measurements with NIT emulsions \rightarrow need new hardware!

Standard FOOT microscope

- Standard nuclear emulsions (grain size = 200 nm)
- Works in transmission
- 20x objective
- 7 µm physical pixel size → 350 nm pixel size
- Z Step = 1.75 µm
- High scanning speed (~ 20 cm²/h, up to 190 cm²/h)
- Small grains not visible

- NIT emulsions (grain size down to 40 nm)
- Works in reflection
- 100x objective + 2.6 zoom lens
- About 27 nm pixel size
- Z Step = 250 nm
- Slow scanning speed (about 14 days to scan top layer of one exposed film! ~ 0.07 cm²/h)
- Small working distance, only one side at a time
- Blue light → plasmonic resonance

NEWSdm microscope

New Microscope to scan NIT emulsions

- Our needs are intermediate between the existing solutions \rightarrow new design
- New optics arrived in May
- Microscope assembly almost completed!

- Works in reflection
- 20x/40x objective + adjustable magnifiying lens
- Intermediate Z step
- Better scanning speed
- Larger working distance, possible to scan both sides
- Blue light \rightarrow plasmonic resonance

New Microscope Tests (1)

- First images with 20x objective (NA=0.75) installed (no magnification lens)
- Light source: $3 \times 4 \ mm^2$ blue LED ($\lambda = 450 470 \ nm$)

Field of View: ~ $800 \times 600 \ \mu m^2$

New Microscope Tests (2)

- First images with 20x objective (NA=0.75) installed (no magnification lens)
- NIT sample exposed to Am alpha source (Trento exposure batch)
- Good contrast for alpha tracks

New Microscope Tests (3)

• Comparison between 20x (NA=0.75) and 40x objective (NA=1.3)

F

- R1-17 film from the brick
- Manual search for interaction vertices

Rayleigh criterium:
$$R = 0.61 \frac{\lambda}{NA}$$

40x objective

Conclusions

- Preliminary scan $@LNGS \rightarrow optimization of linking algorithm parameters$
- Assembly of new microscope almost completed (ETA ~ 1 month)
 - Correct light source position
 - Optimize Z step
 - Test adjustable magnifying lens
 - Test top side scanning / bottom side scanning
- Good contrast observed for alpha tracks (NIT sample poured on glass)
- Difficulty in reconstructing vertical proton tracks!
 - To be confirmed with full area scans: further studies on-going