

Trento Institute for Fundamental Physics and Applications

FOOT Annual Meeting Bergamo 2023

Biological impact of proton target fragments: where do we stand

Emanuele Scifoni, Francesco Tommasino and Andrea Attili on behalf of the MoVe IT collaboration

Outline

- Introduction
 - RBE in a mixed field
 - The MoVe IT Task 1.1
- The standard approach (Bellinzona 2021)
- Additional analysis
- Derivated approach (pB fragmentation)
- Outlook: Impact on other projects

Biological impact - The relative Biological Effectiveness (RBE)

E.Scifoni FOOT AM2023

Biological impact - The relative Biological Effectiveness (RBE)

Biological impact - The relative Biological Effectiveness (RBE)

E.Scifoni FOOT AM2023

Mechanistic RBE models

Friedrich T. Hab. Thesis (2016)

Differential DNA Damage

Secondary Electrons produced by an ion along a Bragg Peak

LEM I: Three Ingredients

LEM IV: Photon equivalent lesion distribution

PARTICLE DEPENDENT RBE

cell	α0 ~ αx (Gy^-1)	β0 ~ βx (Gy^-2)	rN (µm)	rd (µm)
α/β = 2 Gy	0.1	0.05	4.5	0.35
HSG	0.313	0.0615	4.1	0.34
V79	0.184	0.02	4.1	0.26
СНО	0.3698	0.0706	5	0.3698

[Parameters from: Kase, Y., et al. (2008). Biophysical calculation of cell survival probabilities using amorphous track structure models for heavy-ion irradiation. *Phys. Med. Biol.*, 53(1), 37–59.

Experimental data taken from PIDE v3.1 (Friedrich, T. et al., 2019)]

MIXED PARTICLE FIELD

INFŃ

Mixed Field RBE

Primary proton's fragments are considered as secondary particles; each single spectra of those fragments is evaluated separately, considering its impact on the RBE. The total RBE is evaluated by using mixed field algorithm^{3 4} and LEM IV model.

$$\overline{\alpha} = \left(\sum_{l} w_{l} \frac{\mathrm{d}E}{\mathrm{d}x}(l)\right)^{-1} \sum_{l} w_{l} \frac{\mathrm{d}E}{\mathrm{d}x}(l)\alpha_{l}$$
$$\sqrt{\overline{\beta}} = \left(\sum_{l} w_{l} \frac{\mathrm{d}E}{\mathrm{d}x}(l)\right)^{-1} \sum_{l} w_{l} \frac{\mathrm{d}E}{\mathrm{d}x}(l)\sqrt{\beta_{l}}$$

where w_l denotes the relative weight of the radiation component l and

 α_l, β_l are the α_D, β_D values in low dose approximation

 $^{^3}$ M. Zaider and H.H. Rossi 1980 Rad. Res. $83{:}732{-}9$

⁴M. Krämer and M. Scholz 2006 Phys. Med. Biol. 51:1959–1970

Exploiting degrees of freedom in Ion beam TPS

$$\chi^{2}(\vec{N}) = (w_{t})^{2} \sum_{i=1}^{N_{T}} \frac{\left(D_{pre} - D_{i}(\vec{N})\right)^{2}}{\Delta D_{pre}^{2}} \xrightarrow{\text{Target (uniform dose)}} + \left(w_{OAR}^{Dmax}\right)^{2} \sum_{i=1}^{N_{OAR}^{Dmax}} \frac{\left(D_{max} - D_{i}(\vec{N})\right)^{2}}{\Delta D_{max}^{2}} \cdot \theta\left(D_{i}(\vec{N}) - D_{max}\right)$$

Tinganelli et al. Sci Rep. 2015

Target fragmentation in proton therapy?

RBE vs. LET and α/β ratio

McNamara, A. L., Schuemann, J., & Paganetti, H. (2015). A phenomenological relative biological effectiveness (RBE) model for proton therapy based on all published in vitro cell survival data. *Physics in Medicine and Biology*, *60*(21), 8399–8416.

E.Scifoni FOOT AM2023

Modeling and Verification for Ion **OVEIT** beam Treatment planning A Graphycal summary

WP Structure and Tasks Breakdown

Main WP connections

First approach – LETd based

Original paper

FLUKA simulation of target fragmentation in proton therapy

Check f update

A. Embriaco^{a,*}, A. Attili^b, E.V. Bellinzona^{c,d}, Y. Dong^{a,c}, L. Grzanka^f, I. Mattei^a, S. Muraro^a, E. Scifoni^d, F. Tommasino^{c,d}, S.M. Valle^a, G. Battistoni^{a,d}

FLUKA computed spectra

A. Embriaco et al.

Physica Medica 80 (2020) 342-346

Impact on RBE

Embriaco et al. 2020

$$RBE(LET_D, D, (\alpha/\beta)_{ph}) = \frac{1}{2D} \left(\sqrt{\left(\frac{\alpha}{\beta}\right)_{ph}^2 + 4D\left(\frac{\alpha}{\beta}\right)_{ph}} \left(p_0 + \frac{p_1}{(\alpha/\beta)_{ph}} LET_D \right) + 4D^2 \left(p_2 + p_3 \sqrt{\left(\frac{\alpha}{\beta}\right)_{ph}} LET_D \right)^2 - \left(\frac{\alpha}{\beta}\right)_{ph} \right)$$

$$RBE(LET_D, D, (\alpha/\beta)_{ph}) = -\frac{1}{2D} \left(\frac{\alpha}{\beta}\right)_{ph} + \frac{1}{D} \sqrt{\frac{1}{4} \left(\frac{\alpha}{\beta}\right)_{ph}^2} + \left(qLET_D + \left(\frac{\alpha}{\beta}\right)_{ph}\right) D + D^2$$

Biological impact of fragmentation with a full mixed field

2022

Article

Biological Impact of Target Fragments on Proton Treatment Plans: An Analysis Based on the Current Cross-Section Data and a Full Mixed Field Approach

Elettra Valentina Bellinzona ^{1,2}, Leszek Grzanka ³, Andrea Attili ⁴, Francesco Tommasino ^{1,2}, Thomas Friedrich ⁵, Michael Krämer ⁵, Michael Scholz ⁵, Giuseppe Battistoni ², Alessia Embriaco ⁶, Davide Chiappara ^{7,†}, Giuseppe A. P. Cirrone ⁷, Giada Petringa ^{7,‡}, Marco Durante ^{5,8} and Emanuele Scifoni ^{1,2,*}

Computed Spectrum

TOPAS 3.3

-standard Geant4 Electromagnetic module version opt4

- high precision QGSP_BIC_HP model
- ion binary cascade model
- decay physics model
- stopping physics model
- high precision neutron transport model, with G4NDL4.5 data

Impact on a pristine peak RBE

E.Scifoni FOOT AM2023

Impact on survival level

Impact on a SOBP

Impact on a SOBP

E.Scifoni FOOT AM2023

Biological impact of fragmentation

Comparison of plans including target fragments with experimental *in vitro* data

Biological impact of fragmentation

Comparison of plans including target fragments with experimental *in vitro* data

Biological impact of fragmentation

Comparison of plans including target fragments with experimental *in vitro* data

Increasing LET range, less important correction

Scaling the xs..

How much should we correct the available cross sections to get a relavant impact on the High Z contributions?

INFN

Cross Section (CS) estimates from MC codes

RBE vs. total and partial CS (evaluated at 10 mm)

E.Scifoni FOOT AM2023

RBE vs. differential CS (Z = 1, evaluated at 10 mm)

oVe IT

E.Scifoni FOOT AM2023

RBE vs. differential CS (Z = 2, evaluated at 10 mm)

E.Scifoni FOOT AM2023

Beam mixing and LET

Impact of different weighting of beam components in their biological effect, as compared to. LETd based approaches,

Attili et al. NeuDos, 2022, in prep.

INFN

E.Scifoni FOOT AM2023

A similar question: pB fragmentation matters biologically? The NEPTUNE puzzle

One shortcoming of protontherapy is its inability to treat radioresistant cancers. Heavier particles, such as 12C ions, can overcome radioresistance but they present radiobiological and economic issues.

Goal: to investigate the use of nuclear reactions triggered by protons (p + ¹¹B and p + ¹⁹F) generating short-range high-LET alpha particles inside the tumours, thereby allowing a highly localized DNA-damaging action.

Comparison of cross sections for alpha production of the 2 processes exploited in the NEPTUNE project.

Schematic representation of "conventional" protontherapy with low-LET proton beams (left) and the rationale for boron/fluorine enhanced protontherapy (right).

pB Bio impact Modeling:

40

Biophysical effect modeling scheme

Reproduction of experimental irr. conditions

All the different experimental proton fields at CNAO/LNS have been reproduced, including

Target '

EP

oVe IT

E.Scifoni FOOT AM2023

SOBP simulations (MKM for DU145) - α

parameter & relative weight

Radiobiological impact and Comparison with experimental DMF

Summary

- RBE in a mixed field of a particle beam should be computed accounting for all components
- According to the obtained results secondary protons have a relevant impact in proton particle fields
- Helium component is the major contributor for Z>1
- But its role, according to the present available cross sections is limited to a small contibution
- A correction on a factor larger than an order of magnitude on the xs would impact the role of Z>1 frags
- The present correction is enough to provide good agreement with the experimental in vitro data
- Even the energy distribution will not affect importantly the resulting RBE

Thanks!

