To detect dark matter with gravitational wave interferometers

Federico Urban

CEICO

Institute of Physics Czech Academy of Sciences Prague

Cosmic WISPers WG4 meeting Mar 29, 2023

FUROPEAN UNION European Structural and Investment Funds Operational Programme Research. Development and Education

$$
\therefore\ \text{Darity}\ ::
$$

- Spin 0. $\mathcal{L} = (\partial \phi)^2 / 2 m^2 \phi^2 / 2$ **俗称的**
- Spin *J*. $\mathcal{L} = -F^2/4 + m^2 A^2/2$
- $\mathcal{S}_{\text{prim 2.}}$ $\mathcal{L} = M \& M m^2 (M \cdot M M^2)/2$

The spin-2 field is special:

$$
S_{\rm int}[g, M_{ij}, \Psi] \sim \alpha \int d^4x \sqrt{-g} M_{ij} T_{\Psi}^{ij}
$$

It is in fact an extension of general relativity >> Bimetric gravity <<

 $S =$

$$
S = \int d^4x \Bigg[
$$

$$
S = \int d^4x \bigg[\sqrt{|g|} m_g^2 R(g)
$$

 $R(g)$ is the *Ricci* for the metric $g_{\mu\nu}$, with strength m_g ₩

$$
S = \int d^4x \left[\sqrt{|g|} m_g^2 R(g) + \alpha^2 \sqrt{|f|} m_g^2 R(f) \right]
$$

 $R(g)$ is the *Xicci* for the metric $g_{\mu\nu}$, with strength m_g $R(f)$ is the **Xicci** for the metric $f_{\mu\nu}$, with strength αm_{α} ₩

$$
S = \int d^4x \left[\sqrt{|g|} m_g^2 R(g) + \alpha^2 \sqrt{|f|} m_g^2 R(f) - 2m^4 \sqrt{|g|} V(g, f; \beta_n) \right]
$$

 $R(g)$ is the *Ricci* for the metric $g_{\mu\nu}$, with strength m_g ₩

- 卷 $R(f)$ is the **Xicci** for the metric $f_{\mu\nu}$, with strength αm_{α}
- The *interaction* $V(g, f)$ depends on 5 parameters β_n \bigoplus

$$
S = \int d^4x \left[\sqrt{|g|} m_g^2 R(g) + \alpha^2 \sqrt{|f|} m_g^2 R(f) - 2m^4 \sqrt{|g|} V(g, f; \beta_n) \right]
$$

 $R(g)$ is the **Ricci** for the metric $g_{\mu\nu}$, with strength m_g 森 鼎 $R(f)$ is the **Xicci** for the metric $f_{\mu\nu}$, with strength αm_{α}

 \oplus The *interaction* $V(g, f)$ depends on 5 parameters β_n

The coupling to matter breaks the symmetry:

$$
S_m = \int d^4x \sqrt{|g|} \, \mathcal{L}_m(g, \Phi)
$$

$$
S = \int d^4x \left[\sqrt{|g|} m_g^2 R(g) + \alpha^2 \sqrt{|f|} m_g^2 R(f) - 2m^4 \sqrt{|g|} V(g, f; \beta_n) \right]
$$

 $R(g)$ is the *Xicci* for the metric $g_{\mu\nu}$, with strength m_g 森 鼎 $R(f)$ is the **Xicci** for the metric $f_{\mu\nu}$, with strength αm_{α}

 \oplus The *interaction* $V(g, f)$ depends on 5 parameters β_n

The coupling to matter breaks the symmetry:

$$
S_m = \int d^4x \sqrt{|g|} \, \mathcal{L}_m(g, \Phi)
$$

This action contains **no ghosts**! *∼*80 yrs to get right

$$
\therefore \ \ \text{Perturb} \ ::
$$

The dark matter field is described by

$$
M_{ij}(t) = \frac{\sqrt{2\rho_{\rm DM}}}{m}\cos\left(m t + \Upsilon\right)\varepsilon_{ij}(r)
$$

where

$$
\boxed{M_{\mu\nu}\propto \alpha\left(\delta g_{\mu\nu}-\delta f_{\mu\nu}\right)}\quad\text{ aka}\quad \delta g_{\mu\nu}\propto G_{\mu\nu}-\alpha M_{\mu\nu}}
$$

$$
\therefore \ \ \text{Perturb} \ ::
$$

The dark matter field is described by

$$
M_{ij}(t) = \frac{\sqrt{2\rho_{\rm DM}}}{m}\cos\left(m t + \Upsilon\right)\varepsilon_{ij}(r)
$$

where

$$
\boxed{M_{\mu\nu}\propto \alpha\left(\delta g_{\mu\nu}-\delta f_{\mu\nu}\right)}\quad\text{ aka}\quad\delta g_{\mu\nu}\propto G_{\mu\nu}-\alpha M_{\mu\nu}}
$$

from which one finds the curvature perturbations

$$
h_{ij}(t) = \frac{\alpha}{M_{\text{Pl}}} M_{ij}(t) = \frac{\alpha \sqrt{2\rho_{\text{DM}}}}{mM_{\text{Pl}}} \cos\left(m t + \Upsilon\right) \varepsilon_{ij}(x)
$$

$$
\therefore \ \ \text{Perturb} \ ::
$$

The dark matter field is described by

$$
M_{ij}(t) = \frac{\sqrt{2\rho_{\rm DM}}}{m}\cos\left(m t + \Upsilon\right)\varepsilon_{ij}(r)
$$

where

$$
\left|M_{\mu\nu}\propto\alpha\left(\delta g_{\mu\nu}-\delta f_{\mu\nu}\right)\right|\quad\text{aka}\quad\delta g_{\mu\nu}\propto G_{\mu\nu}-\alpha M_{\mu\nu}
$$

from which one finds the curvature perturbations

$$
h_{ij}(t) = \frac{\alpha}{M_{\text{Pl}}} M_{ij}(t) = \frac{\alpha \sqrt{2\rho_{\text{DM}}}}{mM_{\text{Pl}}} \cos\left(m t + \Upsilon\right) \varepsilon_{ij}(x)
$$

This looks like a continuous gravitational wave

 \therefore Continuou \mathfrak{S} \therefore

C Persistent

The coherence time is $t_{\text{coh}} := 4\pi/mv^2 = 2/\text{fv}^2 \sim 10^6/\text{fm}$

The coherence time is $t_{\text{coh}} := 4\pi/mv^2 = 2/\text{fv}^2 \sim 10^6/\text{fm}$

Property Quasi-monochromatic

The frequency is the same within $\lambda_{dB} := 2\pi/mv = 1/\hbar v \sim 10^3/t$

The coherence time is $t_{\text{coh}} := 4\pi/mv^2 = 2/\text{fv}^2 \sim 10^6/\text{fm}$

 \rightarrow Quasi-monochromatic

The frequency is the same within $\lambda_{dB} := 2\pi/mv = 1/\hbar v \sim 10^3/t$

 $\mathbb{Z}_\ell^{\mathcal{D}}$ Continuous waves can be detected at much smaller sentitivity Thanks to a longer integration time and $h_0 \propto T_{\rm obs}^{-1/2} \sim T_{\rm obs}^{-1/4} T_{\rm chunk}^{-1/4}$

The coherence time is $t_{\text{coh}} := 4\pi/mv^2 = 2/\text{fv}^2 \sim 10^6/\text{fm}$

 \rightarrow Quasi-monochromatic

The frequency is the same within $\lambda_{dB} := 2\pi/mv = 1/\hbar v \sim 10^3/t$

- $\mathbb{Z}_\ell^{\mathcal{D}}$ Continuous waves can be detected at much smaller sentitivity Thanks to a longer integration time and $h_0 \propto T_{\rm obs}^{-1/2} \sim T_{\rm obs}^{-1/4} T_{\rm chunk}^{-1/4}$
- f The overall magnitude scales as 1*/*m thanks to *α* C.f. the $1/m^2$ for spin-0 and spin-1 (without fifth forces)

$::$ references $::$

D. Blas, D. L. Nacir and S. Sibiryakov, **arXiv:1612.06789 [hep-ph] [●]• D. Blas, D. L. Nacir and S. Sibiryakov, arXiv:1910.08544 [gr-gc] [●]•** D. López Nacir and FU, **arXiv:1807.10491 [astro-ph.CO]** J. M. Armaleo, D. López Nacir and FU, **arXiv:1909.13814 [astro-ph.HE]** J. M. Armaleo, D. López Nacir and FU, **arXiv:2005.03731 [astro-ph.CO]** J. M. Armaleo, D. López Nacir and FU, **arXiv:2012.13997 [astro-ph.CO]** C. Unal, FU and E. D. Kovetz, **arXiv:2209.02741 [astro-ph.CO]**