

LIME Run-2 energy and z MVA regressions

G. Cavoto, E. Di Marco, D. Pinci

Reconstruction & analysis meeting, 30 March 2023

General principle is to derive a best estimate of the dependent variable (in our case the true cluster energy, or the Z position of the interaction) given a set of measured variables (measured light, position in XY, cluster shape parameters, etc)

- One objective is to correct the saturation effect, which depends on Z
- A similar objective is determine Z (for 3D reco, fiducialization, etc.)
- Main handle can be the cluster shape, which through diffusion have a transverse size $\sigma_T \propto \sqrt{z}$
 - e.g. $\eta = \sigma_T / A_T$ used with BTF electrons gives 20% precision. Rita Roques' Linear regression gives a $\sigma_z \approx 6 \text{ cm}$
- But the light response (and the estimated \hat{z}) depends not only on z_{true} , but simultaneously on many quantities, $(\vec{\theta})$, which are in general correlated
- rightarrow Use this dependence, and also the correlation information, to make a model to predict the true energy $E_{
 m true}$

(and z_{true}) as a function of the measured cluster shapes: $\hat{E} = f(\vec{\theta})$, and $\hat{z} = g(\vec{\theta}')$

- Given that the saturation is the main effect that we want to solve, and this depends on z_{true} :
 - the two sets of variables $\vec{\theta}$ and $\vec{\theta}'$ have a lare overlap ($\vec{\theta}$ contains also I_{SC} , $\vec{\theta}'$ don't)
 - the training can be mostly the same
- The MVA regression is a way to make this inference in n-dimensions
 - Useful because the cluster shapes depend also e.g. on residual x-y position of the cluster (residual vignetting, optical distortion, electric field non-uniformity...)
- In an event classification problem this is like using the projected likelihood in several variables (which is fully optimal as long as the correlations between variables are not relevant)

 In a classification problem one can use a multidimensional probability density, Boosted Decision Tree, or Neural Net to take into account the correlations

z (cm)

- At LNGS we have for now only the 55 Fe source, so fixed energy
 - We can still vary z as uniformly as we want, and we took data for $z = \{5, 15, 25, 36, 48\}$ cm
 - We mocked up variable E_{true} varying HV_{GEM1} in [360 440] V range in steps of 10V
 - In terms of LY is a variation by a factor ~3. Assuming 440V = 5.9 keV => $E_{\text{true}} \in [2.0 5.9] \text{ keV}$
 - With this 2D scan $[E_{true}, z_{true}]$ we can correct for \hat{E} saturation for a range of E_{true}
- BIG limitation(s):
 - 1. The interactions are still the ones of fixed E = 5.9 keV X-ray, i.e. some cluster shapes which for physics depend on E_{true} are not representative of real X-rays of variable E_{true}
 - We are mocking up variable $E_{\rm true}$ only changing the LY by changing the GEM gain
 - Obvious example: track-length. To make the model more general, don't use track-length proportional variables.
 - When applying it, we can only apply to short tracks, or cluster-by-cluster segments of the track (but it requires running it during the reconstruction, not post-reco)
 - 2. The interactions are for X-rays, it **might be not applicable to other kinds of interactions** (eg. NRs)
 - This is probably only 2nd order effect: since the main target is correct for saturation and x-y nonuniformities, and the main sensitivity comes from diffusion, and so by transverse cluster dimension, it might be similar for any type of interaction
 - 3. The source illuminate only the central strip of the detector in x. In the future can think of inclinate the source to populate more the detector?

- Used the 2D $[E_{true}, z_{true}]$ scan with ⁵⁵Fe source taken Feb 22nd. Each point has 400 events

22-02 16:02 - to - 22-02 23:25	Scan VGEM 1	Yes	20	///	9352-9446
22-02 23:23 - to - 23-02 09:40	LY vs time	Yes	20	420	9447-9710
22-02 09:40 - to - 23-02 13:00	Scan VGEM 1	Yes	20	///	9711-9753

- Set of variables used for energy regression:

$$\vec{\theta} = [I_{SC}, \delta, I_{rms}, x, y, \sigma_T, width]$$

- Model: Gradient Boost Regression (GBR) with a Boost Decision Trees algorithm
- Model parameters: max_depth=3, min_samples_split=6, min_samples_leaf=7, learning_rate=0.1, n_estimators=500
- Target: peak of the $I_{SC}^{z=48 \text{ cm}}$ (supposed un-saturated) distribution
 - Mean regression: the mean of the output distribution matches E_{true} (this is our \hat{E})
 - -Quantile regressions: a given quantile of the output distribution matches E_{true} :

-Quantiles trained: 50% (i.e. the median => this is our alternative \hat{E})

-5% and 95% quantiles: useful because for each cluster we have an estimate of energy uncertainty a la Minos

- Selection:

 $-I_{SC} > 10^3$, $I_{rms} > 8$: suppress the fake clusters

- $\sigma_T\gtrsim 300\,\mu m$: suppress the interactions in the CMOS

- R < 900 pix: suppress the bad S/N regions (in any case, the source illuminates only the central strip)

- For x<700 and x>1700 not many interactions to train (this is also a limit of applicability), while in y we have many events

Raw I_{SC}

Median regression \hat{E}_{median}

- Z-scale in the plots rescaled by the mean of the \hat{E} distribution for a fair comparison
- Regression flattens the energy response in x-y, very visible close to the GEM sector boundaries
 - Some step for y<600 to be understood
- $\hat{E}_{\rm mean}$ similar, but a bit worse around the boundaries

- Fit $I_{SC} \equiv E_{raw}$ and $\hat{E} \equiv E_{regr}$ with a Cruijff function at different z_{true} to estimate response and energy resolution

- The corrected energy \hat{E} is more symmetric, at any z_{true} , as expected
- Fits to be improved, but a starting point
- Normalised to E_{true} , i.e. the peak value at 48 cm (least saturated)

- Raw LY varies by a factor 2 for z in [5,48] cm, as known
- Corrected \hat{E} (here median, but similar for mean) almost flat
- Energy resolution improved at any z
 - Estimate 11% improvement (in quadrature) at z=48 cm, i.e. the contribution from the non-z dependence
 - 19% improvement at z=5 cm, so naively 1**5% contribution from the z-correction**

- Using the ~half of the 2D scan dataset not used for training the regressions
 - Strange jump at $HV_{GEM1} = 400V$ and z = 25 cm to be checked (even before regression)

The correction of saturation holds at any (mocked up) E_{true}

- From the quantile regression we have the per-cluster energy resolution estimate
 - Could be used to make categories of best-measured clusters, or just to exclude worst-measured ones

30 March 2023

- Computation of the 4 types of regression energy $\hat{E}_{
 m mean}, \hat{E}_{50\%}, \hat{E}_{5\%}, \hat{E}_{95\%}$ very fast.
 - Computed it for all the Run-2 Runs ("friend" ROOT trees, that can be attached to the RECO ones copied to cloud). Details in the wiki page here.
 - Will use $\hat{E}_{50\%}$ as example of regression energy estimate
 - N.B. since the model is not linear, it is safer not to extrapolate (i.e. compute) the output outside the phase space of the training
 - \mathbb{C} for any cluster not passing the cuts used to define the training dataset $\hat{E} \equiv I_{SC}$

- As a validation of the energy regression, train a regression with the same model, same variables (apart $I_{SC}: \vec{\theta}' = \vec{\theta} I_{SC}$)
 - Since regression seems to be able to correct the saturation, it must predict z as well
 - Not a surprise, see <u>R. Roque's presentation</u>, or the LEMON BTF paper
- Data used: the same dataset of the 2D scans used for energy regression, with the same selection
- Target: *z*_{true}
 - The z of the source is known with ± 0.5 cm uncertainty (conservative)
 - In addition, the collimation of the source adds another $\Delta_z^{\rm collim.}\approx 8\,\rm mm$ to the $z_{\rm true}$ of the interaction
 - Gerefor "internal" z positions, smear the true value by a Gaussian with $\sigma_z = 1 \text{ cm}$
 - To avoid border effects, for z = 5, 48 cm make a domain continuation, at least in the [0-5] cm and [48-50] cm
 - Spread the first point as uniform distribution in [0-5.5]cm, and same for 48 cm

- Output at center: **no bias**, $\sigma_z \approx 2 \,\mathrm{cm}$
- Output at extrema: small bias (1-2 cm), understandable because cannot predict out of detector, $\sigma_7 \approx 3$ cm
- 3-4 cm bias in the intermediate positions, to be understood

- In any case, bias within $\Delta z = \pm 3 \text{ cm}$

- Resolution $\sigma_{z} \approx 4 \, \mathrm{cm}$

- Energy and Z MVA regressions trained on the 2D [z; HV] scans using 55 Fe source mimicking different energy equivalent to a LY of ERs in ~[2-6] keV at HV=440 V
 - Results for energy seems good in terms of correction for x-y non-uniformities (like the LNF one)
 - Also big improvement in terms of correction from saturation
 - This sensitivity wrt the LNF one comes from having multiple "energy"-equivalent points at a multiple z values, allowing a good model fit of the $E = f(E_{true}, z_{true} | \vec{\theta})$ likelihood function
 - Small bias at any energy, and resolution around 10% at any z or E
 - Cluster-by-cluster energy estimate consistent with the predictions
 - Limitations in the applicability:
 - Restricted to the phase space of the training, mostly: short tracks with an energy deposit similar to the 6 keV ERs.
 - The bias outside the training phase space could be estimated with MC
 - Could be different in ERs and NRs (again, MC can shade some light)
 - Validation: Z regression trained and shows reasonable prediction, but biases for intermediate points to be further investigated. In any case Z bias < 3 cm and $\sigma_z \approx 4$ cm
- The estimated energy and z from the regressions are computed and stored in trees copied on the cloud for ANY run of Run2.
 - Can be attached to all other variables of the trees as "friend" tree

The End