## Study of track resolution in IDEA DCH

Adelina D'Onofrio<sup>1,3</sup>, Patrizia Azzi, Lia Lavezzi

**30th March 2023** 







## Status Report

- Motivation: studies on the resolution in IDEA full simulations are needed to provide the parameters to DELPHES fast simulation
- **Procedure:** 
  - Simulation and reconstruction with IDEA standalone code interfaced with KEY4Hep <a href="https://github.com/HEP-FCC/IDEADetectorSIM.git">https://github.com/HEP-FCC/IDEADetectorSIM.git</a>
    - → We use the output in EDM4Hep format
  - Analysis procedure (<u>https://github.com/HEP-FCC/FCCeePhysicsPerformance.git</u>)
    - $\rightarrow$  Plot residuals: (pT,RECO pT,MC) /pT,MC2 fit with a single gaussian
    - → Plot sigma vs pTOT
- Made using the gitlab repositories and the instructions provided by Lia *googledoc*
- **Simulation set:** 
  - $\bigcirc$  40 combinations: 5 θ values [10,30,50,70,89]° \* 8 pTOT [0.5,1,2,5,10,20,50,100] GeV/c

  - → move to CNAF (Many thanks to F. Fanzango for the support)
  - Major update (wrt Lia's presentation at P&P meeting): run at CNAF using condor queues
    - Using the grid storage → voms-proxy-init --voms fcc
    - Each job has 40 runs
    - (TBC) Each job instals the code on a cluster node
    - Store in a directory and zip the output
  - Procedure validated by Lia, starting with electrons production
  - Aiming for electrons, muons and pions production that we will split among us (baseline: 10k events per run)
  - **Timescale for the production:** 
    - $\rightarrow$  100 jobs in 24h, each with 40 points and 100 events per point  $\rightarrow$  10k events in total in 24h
- **Documentation (Many thanks to Patrizia):** efforts starting <u>here</u>



