

## WMS status and plans Marco Cecchi – INFN CNAF On behalf of the gLite job management Product Team

CCR Workshop, Isola d'Elba, May 19th 2011



- Introduction
- Utilization in production
- A few words on EMI
  - preview of compute area services work plan in EMI
- Roadmap for WMS
- Conclusions

Workload Management System



- Grid meta-scheduler, push-model
  - 'canonical' Grid paradigm
    - interoperates with security, information, data
- Complex design
  - Timed/prioritized request queues
  - General purpose thread pool
  - Lock-free mechanism for match-making
  - Rich JDL, pluggable

**OSF N** 

ď

- Closed-loop mechanisms for safe job replanning
  - L&B Statistics on queue performance
- DoS prevention based on both system and application parameters
- Handle complex jobs, with dependencies
- Fully-fledged monitoring tool (web interface, statistics





#### WMS release history

#### • WMS/gLite 3.1

- SL4 ia32
  - more then 2 years in production
  - certified/released in EGEE-III
- Very stable service
  - Improved over time in EGEE-III
  - Little need for baby-sitting
    - 'manual' maintenance basically only for disk handling

#### • WMS/gLite 3.2

- SL5 x86\_64

**OSF N** 

- Released in the EMI-1 distribution (Kebnekaise)
- To be tested in production yet
  - Requires some hardening (LB PR/bkserver)



#### • WMS/glite 3.1

- CNAF+BA: 24 instances in load balancing
  - https://wmsmonitor.cnaf.infn.it:8443/wmsmon/main/main.php
  - 2010 Jan  $1^{st}$  2010 Dec $31^{th}$

| VO           | SUBMITTED | VO       | SUBMITTED |
|--------------|-----------|----------|-----------|
| cms          | 28543161  | dteam    | 106390    |
| atlas        | 6111813   | infngrid | 4276      |
| ops          | 1141799   | virgo    | 8061      |
| lhcb         | 1160437   | enmr.eu  | 5832      |
| biomed       | 639114    | alice    | 150519    |
| theophys     | 700223    |          |           |
| argo         | 454453    |          | 20017140  |
| compchem     | 369007    |          | 39917149  |
| superbvo.org | 155887    | CNAF     | ~40M      |
| glast.org    | 83178     |          |           |
| pamela       | 95239     |          |           |
| gridit       | 132960    |          |           |
| bio          | 51737     |          |           |



#### • WMS/glite 3.1

- WMS node-types deployed at CERN and CNAF, mostly
  - Other italian nodes: PD, CT, BA

#### - CERN: 25 nodes

http://wmsmon.cern.ch/monitoring/monitoring.html

| VO    | avg. jobs/day per instance<br>as of May '11 | avg. jobs/day | avg. jobs/year |
|-------|---------------------------------------------|---------------|----------------|
| SAM   | 11k+4k+11k+10k+3k+3k+3k                     | 48k           | 17.5M          |
| CMS   | 15k+15k+15k+5k                              | 50k           | 18.25M         |
| Alice | 5k+5k+5k                                    | 15k           | 5.5M           |
| Atlas | 2k+1.5k+1.5k                                | 5k            | 1.8M           |
| LHCb  | 2.5k+2.5k                                   | 5k            | 1.8M           |
|       |                                             |               | ~45M           |



#### • WMS/glite 3.1

62

**R** OSF N

#### – Utilization in production over Y2010

| Y2010 | submitted jobs |         |  |
|-------|----------------|---------|--|
|       | CERN           | 45Mjobs |  |
|       | CNAF           | 40Mjobs |  |
|       | TOTAL          | 85Mjobs |  |
|       | HEP            | 83Mjobs |  |
|       |                |         |  |
|       |                |         |  |



#### WMS/glite 3.1

#### monthly production sampled every sixth month

| VO           | Jan 2009 | Jun 2009 | Jan 2010 | Jun 2010 | Jan 2011 | Apr 2011 |
|--------------|----------|----------|----------|----------|----------|----------|
| alice        | 143718   | 49106    | 133938   | 0        | 0        | 2        |
| argo         | o        | 22009    | 20       | 1517     | 3904     | 51026    |
| atlas        | 225376   | 214731   | 213023   | 191775   | 586148   | 657552   |
| babar        | 0        | 1797     | 0        | 0        | 0        | 0        |
| bio          | 0        | 4496     | 24947    | 5624     | 0        | 8908     |
| biomed       | o        | 10335    | 17057    | 83071    | 46780    | 101155   |
| cdf          | 0        | 9876     | 0        | 0        | 0        | 0        |
| cms          | 848158   | 1610374  | 2346211  | 2570718  | 2084066  | 2264921  |
| compchem     | o        | 5675     | 44403    | 1903     | 48778    | 97116    |
| comput-er.it | 0        | 0        | 0        | 0        | 36       | 1        |
| cyclops      | 0        | 46       | 0        | 8        | 0        | 0        |
| enmr.eu      | 0        | 873      | 1        | 0        | 0        | 2872     |
| esr          | 0        | 3642     | 211      | 0        | 0        | 0        |
| glast.org    | 0        | 40129    | 15483    | 10579    | 285      | 36365    |
| gridit       | 0        | 691      | 9543     | 1163     | 2012     | 2015     |
| infngrid     | 0        | 15       | 17       | 38       | 88       | 4472     |
| lhcb         | 41788    | 71030    | 114752   | 48743    | 105618   | 66078    |
| magic        | 0        | 0        | 0        | 0        | 0        | 2588     |
| ops          | 0        | 21755    | 23187    | 90709    | 141547   | 137517   |
| pamela       | 0        | 0        | 273      | 6287     | 1229     | 3687     |
| superbvo.org | 0        | 0        | 302      | 579      | 469      | 184      |
| theophys     | 0        | 34370    | 62306    | 41343    | 19827    | 58140    |
| virgo        | 0        | 708      | 754      | 0        | 0        | 3528     |



## A few words on EMI

- The European Middleware Initiative is a close collaboration of the three major middleware providers, ARC, gLite and UNICORE
  - Develop middleware that strengthens European presence by consolidating and enhancing the existing distributed computing infrastructures
    - Gluing together european MW stacks
    - Reducing more than increasing code
  - Simplify and organize the different middleware services implementations by delivering a streamlined, coherent, tested and standard compliant distribution
  - Focus on usability, compatibility, manageability, interoperability, sustainability

#### **EMI WMS 3.3 highlights**



- Job feedback
  - Replanning jobs stuck in blocking queues
  - L&B statistics on queue performance
    - Avg and std dev over a given period of time
- Sandbox transfer tracking
  - sandbox transfer is a major cause of faults (proxy mixup, wrong FQAN/uid-gid mapping, network outages etc.)
    - LB 2.1 introduces the ability to log sandbox transfer progress, as a separate specific job type linked to the user job
- More performant WMS+LB co-location deployment
- GridSite 1.5

**OSF N** 

ď

- Delegation-2
- RFC-style VOMS proxies
- Fixed bugs/ enhancements
  - When a collection is aborted the "Abort" event is now logged for all the sub-nodes as well (wmproxy side)
  - Retry policies for ISB download and OSB upload are now separated.
  - All attributes of a SA/SE can now be used in gangmatching

## Preview of compute area components work plan in EMI

- Portability
  - full distribution
    - SL6 x86\_64
    - Debian 6 x86\_64
  - clients
    - SL5/32
    - latest Ubuntu
- GLUE2-aware MatchMaker, ISM, JDL
- Improve interactive access? (in WMS it is called perusal)
- Remove GSI implement EMI delegation
- Do cloudy things :)
- Support all the EMI-blessed Batch Systems
- Provide a common framework for MPI



## **Preview of compute area components work plan in EMI**

- Use Argus for AuthZ throughout
- Use common AuthN libraries
- Provide DoS protection mechanisms (done for WMS)
- Document performance/stability
  - Easy for the WMS thanks to WMSMon

**OSF N** ď



ď

#### **WMS roadmap**



- Access control with Argus
- DAGs without Condor DagMan
  - DAG processing engine in the WM
    - Job status taken by L&B
    - Reduced a number of helpers/components
  - Support for DAGs in CREAM!
  - Support workflows
  - WM Memory footprint problems
    - Somehow related to ISM restructuring for GLUE2.0
  - Test feedback





#### Conclusions



- WMS has an expanding use base
  - Especially non-HEP VOs
  - Aim at achieving a strategic position in EGI/IGI
- Implement workflows
  - CompChem has interesting use-cases
- Use EMI at our best for...
  - Make the distribution standard
  - Easily build from source
  - Try to do something interesting with HPC and clouds



# Thank you!

EMI is partially funded by the European Commission under Grant Agreement RI-261611

#### Submission feedback: a simple example with the JDL



```
EnableWmsFeedback = true; // job will be replanned when (believed to be) stuck ...
ReplanTimeout = 3600; //...for more than one hour, explicitly. this grace period can
                         // also be automatically calculated by the WMS, according to its
                         // statistics, feature enabled if the attribute is missing
JobType="normal";
Executable = "/bin/ls";
InputSandbox = {};
OutputSandbox = {"out.log", "err.log"};
// let's create some aliases
ERT = other.GLUECEEstimatedResponseTime;
LastTwoHours = 7200;
rt compute = [mean = 0; weighted mean = 1; std dev = 2;];
ART = MeasuredResponseTime(rt compute.mean, other.GLUECEUniqueId, LastTwoHours);
RT StdDev = MeasuredResponseTime(rt compute.std dev, other.GLUECEUniqueId, LastTwoHours);
WorkloadRequirements =
   ART == -1 // unknown resource/not significant sample, keep service discovery active
    (ERT >= ART - 2 * RT StdDev) && (ERT <= ART + 2 * RT StdDev);
   // if the RT estimate is exceedingly optimistic or pessimistic,
   // the site must be excluded, being not dependable
   // in this case, we assess the reliability of ERT with probability ~0.95
   // even if it is the condition ERT >= ART - 2 * RT StdDev which is more important to us
UserRequirements = true; // requirements in terms of CPU, memory, network, software, etc.
Requirements = UserRequirements && WorkloadRequirements;
ERT ART tradeoff=.5; // gives the same importance to ART and ERT
Rank = -(ERT ART tradeoff * ERT + (1 - ERT ART tradeoff) * (ART > 0 ? ART : ERT));
1
```

WorkloadRequirements can also be expressed server-side, it will appended in && to UserRequirements at MM time. This will simplify the user's JDL.

## This design has some pros...



- By design scalability and no 'single point of failure
  - performance scales up with the number of instances with no fragmentation on the Grid resources
  - mechanisms to prevent overall congestion
- Stable service, requires little maintenance
- No 'pressure' on the Grid
  - only 'real' jobs are sent to sites
  - no waste of CPU cycles
- Information system is devoted to gathering throughout
  - no need to retrieve information in other ways
- Operations performed on behalf on the user
  - avoid security implications with identity switching
  - accounting is easier

**OSF N** 

ď

- 'Static' matchmaking is still vital even with late-binding paradigms
  - Among the other things, it is primary that a user sends payloads only where they have enough time and processing power
    - this cannot be decided when the job is already running, lest having submitted and waited in queue for nothing

#### ...and some cons as well



- Information system, plays a key role in the described architecture, however:
  - "The map is not the territory"
    - GLUE is an abstraction which sometimes cannot grasp the actual resource layout/distribution
      - cluster/subcluster
      - ...
    - Consumer services have to deal with several latencies
      - update rates
      - information caching at each involved level
    - It cannot be blindly trusted, especially for live parameters
      - freecpus, ERT, etc.
- 'On-the-fly' reprioritization is hard to achieve with this model
  - once the job-queue binding is created, it cannot be changed
    - given the intrinsic/extrinsic weaknesses of the Information System, this might become a problem (otherwise the WMS is not supposed to have too many jobs waiting in queue)
- Complex system, sometimes difficult to debug

### Towards a mixed-paradigm (II)



- This feature will implement a **feedback mechanism**:
  - 1) to learn about the overall status from the previous jobs's history and not only from the Information System
  - 2) to be able to migrate stuck jobs
- After a given, dynamic timeout, a resubmission will be triggered if the job is still queued at the LRMS
  - this is done via a mechanism which does not need to wait for the LRMS to actually perform the cancellation (done via job's token removal)
    - each job instance has a unique token identifier
    - the WMS performs a new MM and atomically renames the token upon each reschedule
  - State transitions statistics will be produced by LB server >=2.1 and made available by the WMS to the user, via JDL extensions (classad plugins) and CLI
    - MeasuredResponseTime() available from the user JDL, to be evaluated by the WMS at each MM. It can return either average or standard deviation
    - env GLITE\_WMS\_QUERY\_SERVER=lbserver.ics.muni.cz:9400
       glite-lb-stats-duration-fromto ALL 4 5 # returns scheduled->running average time and std dev grouped by queue, for all users