
WMS
status and plans
Marco Cecchi – INFN CNAF

On behalf of the gLite job management
Product Team

CCR Workshop, Isola d'Elba, May 19th 2011

E
M

I IN
F

S
O

-R
I-

2
6

1
6

1
1

– Introduction

– Utilization in production

– A few words on EMI
• preview of compute area services work plan in

EMI

– Roadmap for WMS

– Conclusions

E
M

I IN
F

S
O

-R
I-

2
6

1
6

1
1

3

• Workload Management System
– Grid meta-scheduler, push-model

• ‘canonical’ Grid paradigm
– interoperates with security, information, data

– Complex design
• Timed/prioritized request queues

• General purpose thread pool

• Lock-free mechanism for match-making

• Rich JDL, pluggable

• Closed-loop mechanisms for safe job replanning

– L&B Statistics on queue performance

• DoS prevention based on both system and application parameters

• Handle complex jobs, with dependencies

• Fully-fledged monitoring tool (web interface, statistics, ...)

Dump debug info

priority queue

timed (prioritized) events

Job resubmit

Purchase
from InfoSys

ISM update Job submit

Dispatch
received
requests

Job cancel

Job replan

generic worker
thread pool

E
M

I IN
F

S
O

-R
I-

2
6

1
6

1
1

• WMS release history

• WMS/gLite 3.1
– SL4 ia32

• more then 2 years in production
• certified/released in EGEE-III

– Very stable service
• Improved over time in EGEE-III
• Little need for baby-sitting

– ‘manual’ maintenance basically only for disk handling

• WMS/gLite 3.2
– SL5 x86_64

• Released in the EMI-1 distribution (Kebnekaise)
• To be tested in production yet

– Requires some hardening (LB PR/bkserver)

E
M

I IN
F

S
O

-R
I-

2
6

1
6

1
1

5

VO SUBMITTED
cms 28543161

atlas 6111813

ops 1141799

lhcb 1160437

biomed 639114

theophys 700223

argo 454453

compchem 369007

superbvo.org 155887

glast.org 83178

pamela 95239

gridit 132960

bio 51737

• WMS/glite 3.1
– CNAF+BA: 24 instances in load balancing

• https://wmsmonitor.cnaf.infn.it:8443/wmsmon/main/main.php

• 2010 Jan 1st – 2010 Dec31th

VO SUBMITTED
dteam 106390

infngrid 4276

virgo 8061

enmr.eu 5832

alice 150519

...

39917149

CNAF ~40M

E
M

I IN
F

S
O

-R
I-

2
6

1
6

1
1

• WMS/glite 3.1
– WMS node-types deployed at CERN and CNAF,

mostly
• Other italian nodes: PD, CT, BA

– CERN: 25 nodes
• http://wmsmon.cern.ch/monitoring/monitoring.html

VO avg. jobs/day per instance
as of May ‘11

avg. jobs/day avg. jobs/year

SAM 11k+4k+11k+10k+3k+3k+3k 48k 17.5M

CMS 15k+15k+15k+5k 50k 18.25M

Alice 5k+5k+5k 15k 5.5M

Atlas 2k+1.5k+1.5k 5k 1.8M

LHCb 2.5k+2.5k 5k 1.8M

~45M

E
M

I IN
F

S
O

-R
I-

2
6

1
6

1
1

Y2010 submitted jobs

CERN 45Mjobs

CNAF 40Mjobs

TOTAL 85Mjobs
HEP 83Mjobs

• WMS/glite 3.1
– Utilization in production over Y2010

E
M

I IN
F

S
O

-R
I-

2
6

1
6

1
1

8

WMS/glite 3.1
monthly production sampled every sixth month

E
M

I IN
F

S
O

-R
I-

2
6

1
6

1
1

A few words on EMI
– The European Middleware Initiative is a close

collaboration of the three major middleware
providers, ARC, gLite and UNICORE

• Develop middleware that strengthens European
presence by consolidating and enhancing the
existing distributed computing infrastructures

– Gluing together european MW stacks
– Reducing more than increasing code

• Simplify and organize the different middleware
services implementations by delivering a
streamlined, coherent, tested and standard
compliant distribution

• Focus on usability, compatibility,
manageability, interoperability,
sustainability

E
M

I IN
F

S
O

-R
I-

2
6

1
6

1
1

EMI WMS 3.3 highlights

• Job feedback

– Replanning jobs stuck in blocking queues

– L&B statistics on queue performance

• Avg and std dev over a given period of time

• Sandbox transfer tracking

– sandbox transfer is a major cause of faults (proxy mixup, wrong
FQAN/uid-gid mapping, network outages etc.)

• LB 2.1 introduces the ability to log sandbox transfer progress,
as a separate specific job type linked to the user job

• More performant WMS+LB co-location deployment

• GridSite 1.5

– Delegation-2

– RFC-style VOMS proxies

• Fixed bugs/ enhancements

– When a collection is aborted the "Abort" event is now logged for all
the sub-nodes as well (wmproxy side)

– Retry policies for ISB download and OSB upload are now separated.

– All attributes of a SA/SE can now be used in gangmatching

E
M

I IN
F

S
O

-R
I-

2
6

1
6

1
1

Preview of compute area components
work plan in EMI

– Portability
• full distribution

– SL6 x86_64
– Debian 6 x86_64

• clients
– SL5/32
– latest Ubuntu

– GLUE2-aware MatchMaker, ISM, JDL

– Improve interactive access? (in WMS it is called perusal)

– Remove GSI – implement EMI delegation

– Do cloudy things :)

– Support all the EMI-blessed Batch Systems

– Provide a common framework for MPI

E
M

I IN
F

S
O

-R
I-

2
6

1
6

1
1

Preview of compute area
components work plan in EMI

– Use Argus for AuthZ throughout

– Use common AuthN libraries

– Provide DoS protection mechanisms (done for
WMS)

– Document performance/stability
• Easy for the WMS thanks to WMSMon

E
M

I IN
F

S
O

-R
I-

2
6

1
6

1
1
WMS roadmap

• Access control with Argus
• DAGs without Condor DagMan

• DAG processing engine in the WM
– Job status taken by L&B
– Reduced a number of helpers/components

• Support for DAGs in CREAM!

– Support workflows

– WM Memory footprint problems
• Somehow related to ISM restructuring for GLUE2.0

– Test feedback

E
M

I IN
F

S
O

-R
I-

2
6

1
6

1
1
Conclusions

– WMS has an expanding use base
• Especially non-HEP VOs
• Aim at achieving a strategic position in EGI/IGI

– Implement workflows
• CompChem has interesting use-cases

– Use EMI at our best for...
• Make the distribution standard
• Easily build from source
• Try to do something interesting with HPC and

clouds

EMI is partially funded by the European Commission under Grant
Agreement RI-261611

Thank you!

E
M

I IN
F

S
O

-R
I-

2
6

1
6

1
1
Submission feedback: a simple example with the JDL

[
EnableWmsFeedback = true; // job will be replanned when (believed to be) stuck...
ReplanTimeout = 3600; //...for more than one hour, explicitly. this grace period can

 // also be automatically calculated by the WMS, according to its
 // statistics, feature enabled if the attribute is missing

JobType="normal";
Executable = "/bin/ls";
InputSandbox = {};
OutputSandbox = {"out.log", "err.log"};
// let’s create some aliases
ERT = other.GLUECEEstimatedResponseTime;
LastTwoHours = 7200;
rt_compute = [mean = 0; weighted_mean = 1; std_dev = 2;];
ART = MeasuredResponseTime(rt_compute.mean, other.GLUECEUniqueId, LastTwoHours);
RT_StdDev = MeasuredResponseTime(rt_compute.std_dev, other.GLUECEUniqueId, LastTwoHours);
WorkloadRequirements =
 ART == -1 // unknown resource/not significant sample, keep service discovery active
 ||
 (ERT >= ART - 2 * RT_StdDev) && (ERT <= ART + 2 * RT_StdDev);
 // if the RT estimate is exceedingly optimistic or pessimistic,
 // the site must be excluded, being not dependable
 // in this case, we assess the reliability of ERT with probability ~0.95
 // even if it is the condition ERT >= ART - 2 * RT_StdDev which is more important to us
UserRequirements = true; // requirements in terms of CPU, memory, network, software, etc.
Requirements = UserRequirements && WorkloadRequirements;
ERT_ART_tradeoff=.5; // gives the same importance to ART and ERT
Rank = -(ERT_ART_tradeoff * ERT + (1 - ERT_ART_tradeoff) * (ART > 0 ? ART : ERT));
]

WorkloadRequirements can also be expressed server-side, it will appended in && to
UserRequirements at MM time. This will simplify the user’s JDL.

E
M

I IN
F

S
O

-R
I-

2
6

1
6

1
1

• By design scalability and no ‘single point of failure

– performance scales up with the number of instances with no
fragmentation on the Grid resources

– mechanisms to prevent overall congestion

• Stable service, requires little maintenance

• No ‘pressure’ on the Grid

– only ‘real’ jobs are sent to sites

– no waste of CPU cycles

• Information system is devoted to gathering throughout

– no need to retrieve information in other ways

• Operations performed on behalf on the user

– avoid security implications with identity switching

– accounting is easier

• 'Static' matchmaking is still vital even with late-binding paradigms

– Among the other things, it is primary that a user sends payloads only
where they have enough time and processing power

• this cannot be decided when the job is already running, lest having
submitted and waited in queue for nothing

This design has some pros...

E
M

I IN
F

S
O

-R
I-

2
6

1
6

1
1

• Information system, plays a key role in the described architecture,
however:

– “The map is not the territory"

• GLUE is an abstraction which sometimes cannot grasp the
actual resource layout/distribution

– cluster/subcluster
– ...

• Consumer services have to deal with several latencies
– update rates

– information caching at each involved level

• It cannot be blindly trusted, especially for live parameters
– freecpus, ERT, etc.

• ‘On-the-fly’ reprioritization is hard to achieve with this model

– once the job-queue binding is created, it cannot be changed

• given the intrinsic/extrinsic weaknesses of the Information
System, this might become a problem (otherwise the WMS
is not supposed to have too many jobs waiting in queue)

• Complex system, sometimes difficult to debug

...and some cons as well

E
M

I IN
F

S
O

-R
I-

2
6

1
6

1
1

Towards a mixed-paradigm (II)

• This feature will implement a feedback mechanism:

– 1) to learn about the overall status from the previous jobs’s
history and not only from the Information System

– 2) to be able to migrate stuck jobs

• After a given, dynamic timeout, a resubmission will be triggered if
the job is still queued at the LRMS

• this is done via a mechanism which does not need to wait for
the LRMS to actually perform the cancellation (done via job’s
token removal)

– each job instance has a unique token identifier

– the WMS performs a new MM and atomically renames the
token upon each reschedule

– State transitions statistics will be produced by LB server >=2.1
and made available by the WMS to the user, via JDL extensions
(classad plugins) and CLI

– MeasuredResponseTime() available from the user JDL, to be
evaluated by the WMS at each MM. It can return either average or
standard deviation

– env GLITE_WMS_QUERY_SERVER=lbserver.ics.muni.cz:9400

glite-lb-stats-duration-fromto ALL 4 5 # returns scheduled->running
average time and std dev grouped by queue, for all users

	European Middleware Initiative (EMI) – Hot Topic
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Thank you!
	Slide 16
	Slide 17
	Slide 18
	Slide 19

