
ALICE DATA MANAGEMENT

S. Bagnasco, INFN Torino

OUTLINE

- The ALICE computing model
 - Yet again, with a focus on Data Management
- Scheduled activity
 - HI processing
- Chaotic activity
 - Getting ready for QM2011
- Things change
 - Evolution of the CM
- Impact on CPU efficiency
 - [Put a punchline here]

THE ORIGINAL ALICE COMPUTING MODEL

• Tier-O

Does: first pass reconstruction; calibration and alignment

Stores: one copy of RAW, calibration data and first-pass ESDs

• Tier-1

Does: reconstructions and scheduled batch analysis

Stores: second collective copy of RAW, one copy of all data to be kept, disk replicas of ESDs and AODs, replica of calibration data

• Tier-2

Does: simulation and end-user analysis

Stores: disk replicas of AODs and ESDs

Tier role distinction is becoming more shaded: except for reconstruction, everybody does everything if needed or possible

COMPUTING STRATEGY

- AliEn as a common front-end for all distributed resources
 - Using transparent interfaces to different grids where needed
 - Xrootd as a common file access protocol
- Resources are shared
 - No "localization" of data
 - File and job quota enforced in the Central Services
 - Prioritisation of jobs in the central Task Queue
- Data access only through the GRID and AAF
 - No backdoor access to data
 - No "private" processing on shared resources
 - No "private" resources outside of the grid

DATA MANAGEMENT KEY CONCEPTS

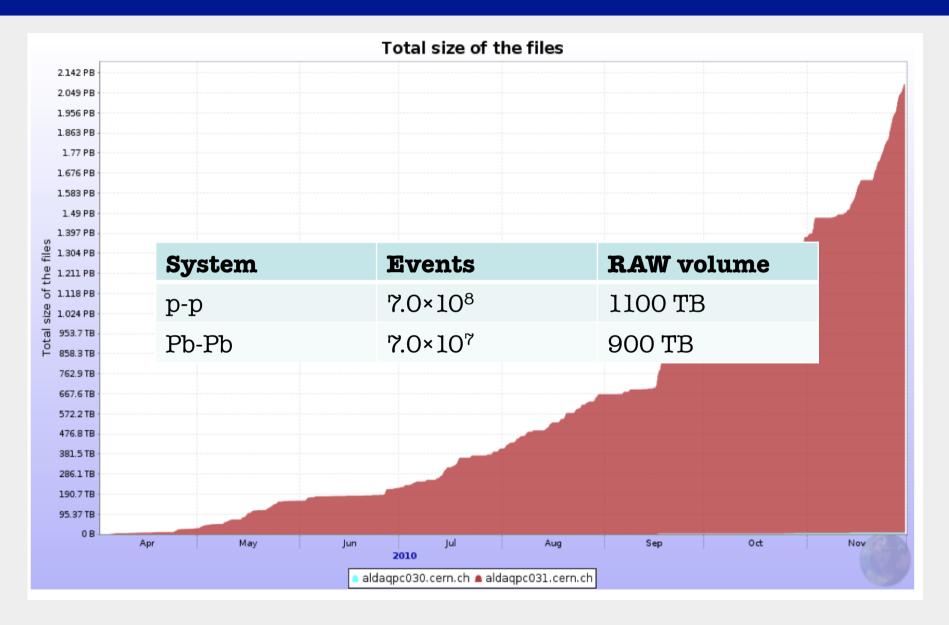
- Central File Catalogue
 - Central DB of all file produced
 - Enforcement of access rights, quotas, policies etc.
 - FS-like browsable interface for users
- Calibrations and conditions data are no different
 - Root files accessible via catalogue entries
 - Database structure (OCDB) for structured access
 - Replicated in Tier-1s (not yet)
- Xrootd as uniform access protocol
 - Across sites, storage architectures and use cases
 - Run the same analysis macro locally, on PROOF or on the Grid accessing data regardlessly of their physical location
- Central transfers queue
 - Manages data transfers
 - Uses xrd3cp for transfers

THREE JOB CLASSES

MC simulation & reco production

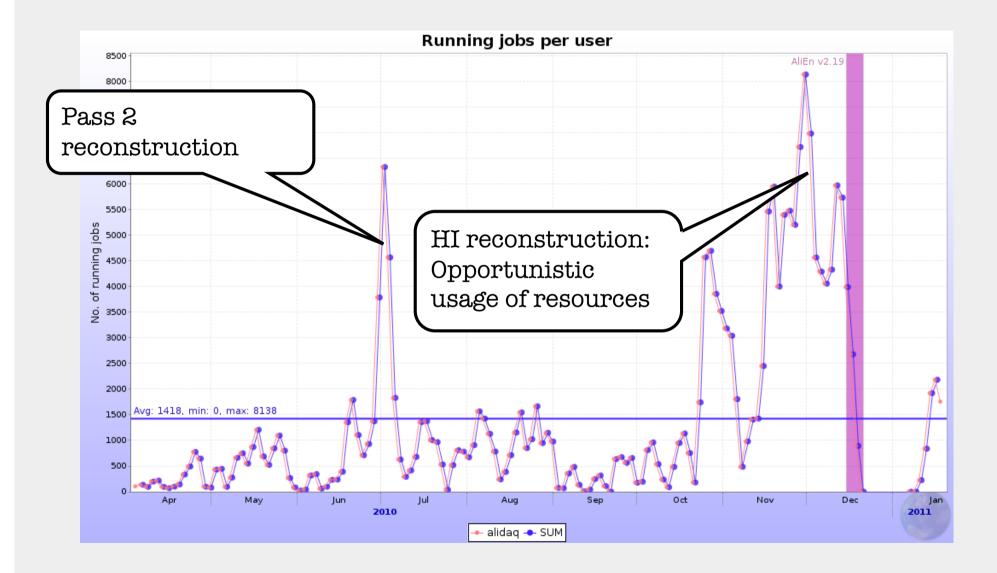
- Low I/O, high CPU efficiency
- Data export (several copies) after job completion
- Managed, scheduled

Analysis Trains

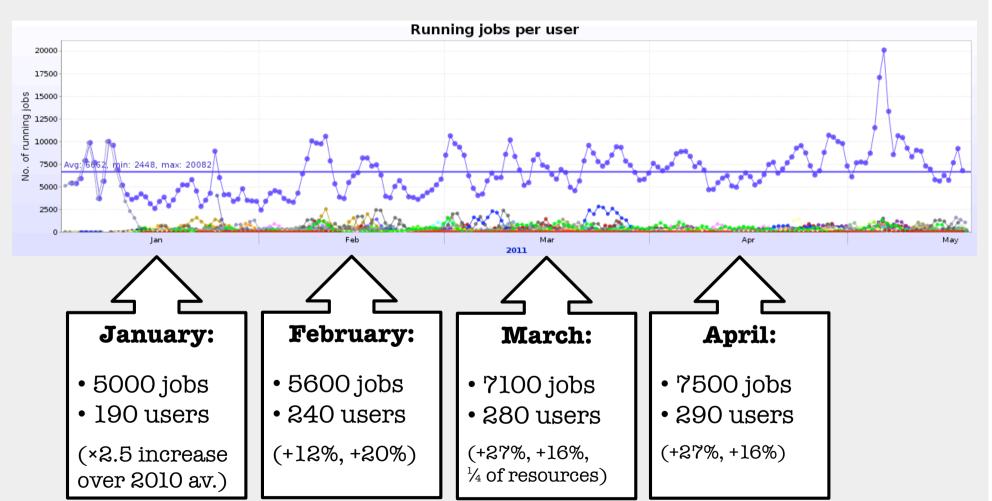

- Optimized I/O (read once, do many tasks)
- Streamlined code (as much as possible...)
- Managed, scheduled

Userjobs

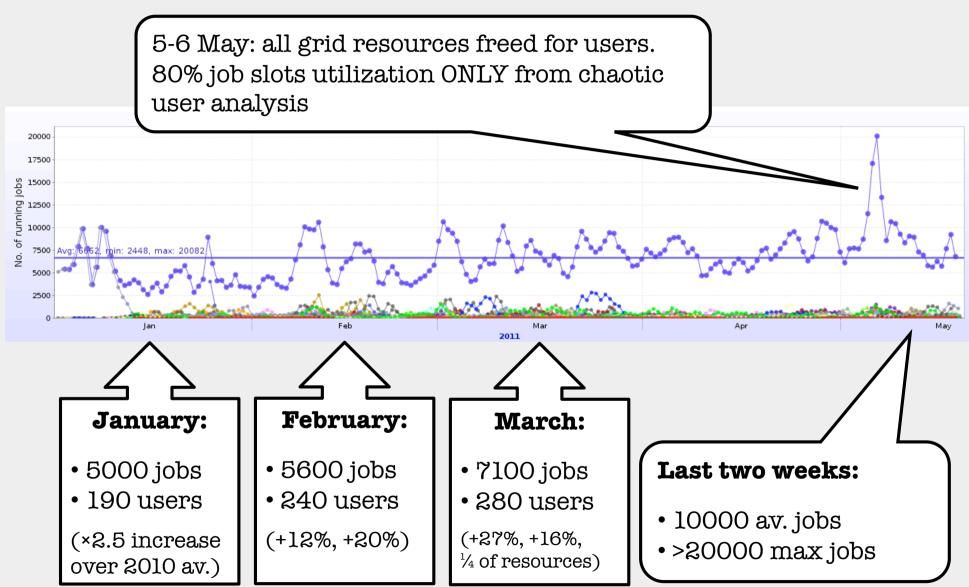
- Lowest CPU efficiency
- Variable job duration, many failures, far-from-perfect code
- Unmanaged, chaotic



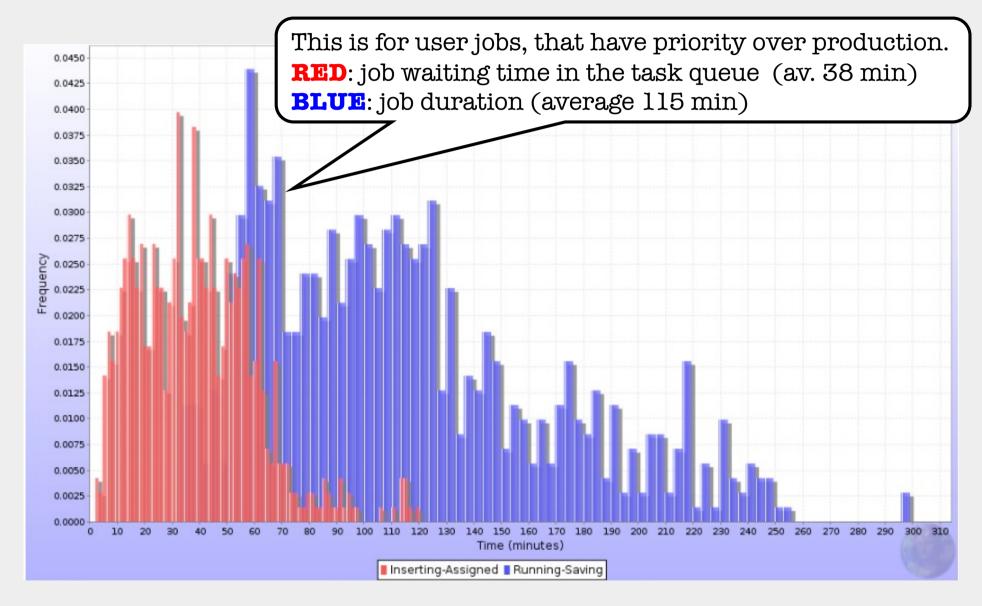
2010 DATA SAMPLE



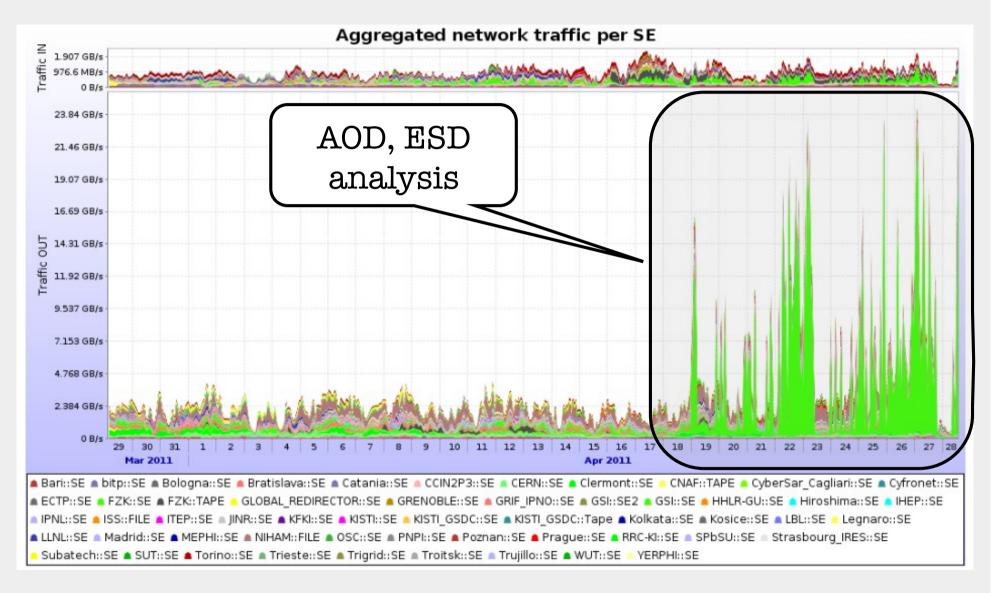
HI DATA PROCESSING



USER ANALYSIS JOBS 2011



USER ANALYSIS JOBS 2011



GRID RESPONSIVENESS

USER ANALYSIS ACCESS TO STORAGE

THINGS CHANGE

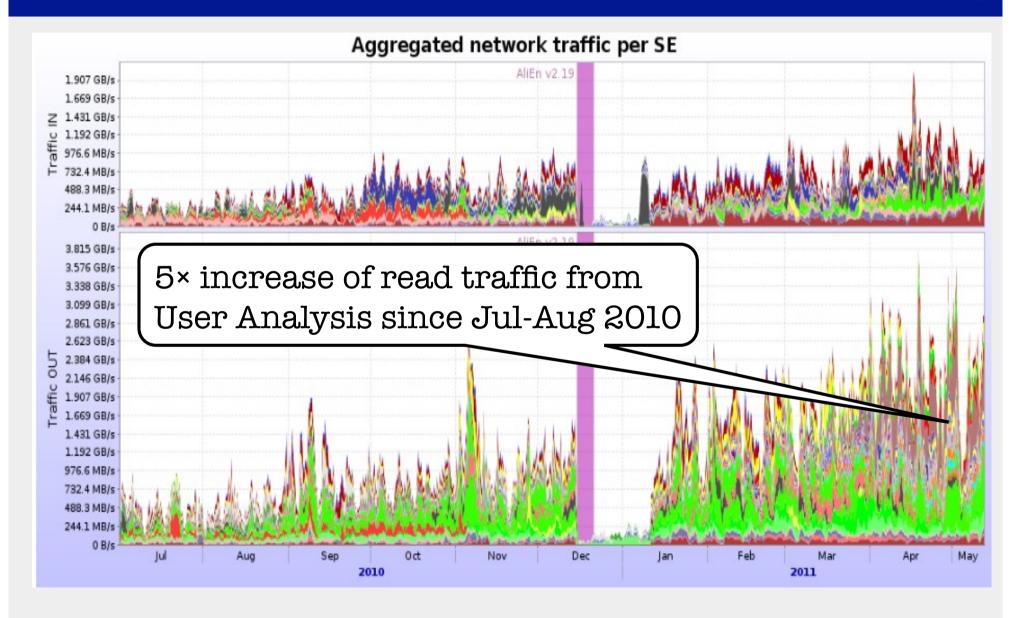
- Some extra tasks added to original CM
 - Offline calibration
 - QA Analysis trains
 - More to follow
- User Analysis on such a scale was never tried on the Grid before
 - The structure and demands are becoming more clear
 - Again, more to follow
- Everything worked but computing model is evolving to take this into account

USER JOBS ARE MESSY

Diverging memory allocation

- Killed jobs or even stuck WNs
- A safety is in place with new AliEn release

Coding and JDL errors


- Private code is never tested enough
- Thousands of jobs can be failing very quickly
- User problem or site problem?

A user will do anything with an open query

- E.g. queries with $o(10^6)$ files
- Whether it makes sense or not
- Protections need to be in place everywhere

STORAGE RATES HISTORY

UPDATED CM PARAMETERS

	pp/event	PbPb/event
CPU reco (KHEP06×s)	0.07 (+10%)	9.75 (+71%)
CPU MC (KHEP06×s)	1.30 (+40%)	150.00 (+4%)
Raw size (MB)	1.3 (+18%)	12.5 (0%)
ESD size (MB)	0.08 (+37%)	1.20 (-65%)
MC Raw size (MB)	0.4 (0%)	61.5 (0%)
MC ESD size (MB)	0.26 (0%)	50 (0%)

F. Carminati

- More files than ever anticipated
 - Original model:

```
1 \text{ RAW} \rightarrow 1 \text{ ESD} \rightarrow 1 \text{ AOD} (\times 3 \text{ passes})
```

Current cascade:

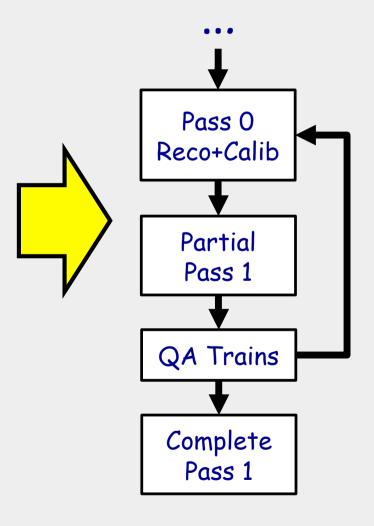
```
1RAW → 5× ESD-related (×3 passes) →
```

- \rightarrow 6× AOD-related (per train) (×*N* passes)
- MC is more difficult to describe, but also a substantial generator of files
- Users are prolific generators of files (*.root)
- In one year we have accumulated **25×10**⁶ files in the catalogue (RAW is 1.1 ×10⁶)
- The physical replication of the above is about 4.2

More complex job structure

- Added few more reconstruction passes and analysis trains to the original processing model
- MC is increasing in complexity and is more fragmented (PWG requests,...)
- User access strongly depends on the file fragmentation from the productions
- In general, the jobs are becoming more complex and demanding on the entire Grid infrastructure
- "Sending jobs where data is" is becoming more difficult

More access to calibration


- OCDB is 5× bigger (in number of objects) than originally anticipated
- Access to OCDB is ~30 more frequent than original projections
- Will increase substantially with more PassO, Trains and Tenders – but how much?
- All of the above has increased the load on the AliEn catalogue and access services dramatically
- In addition to the massive file access within and outside of the Grid infrastructure

Original CM

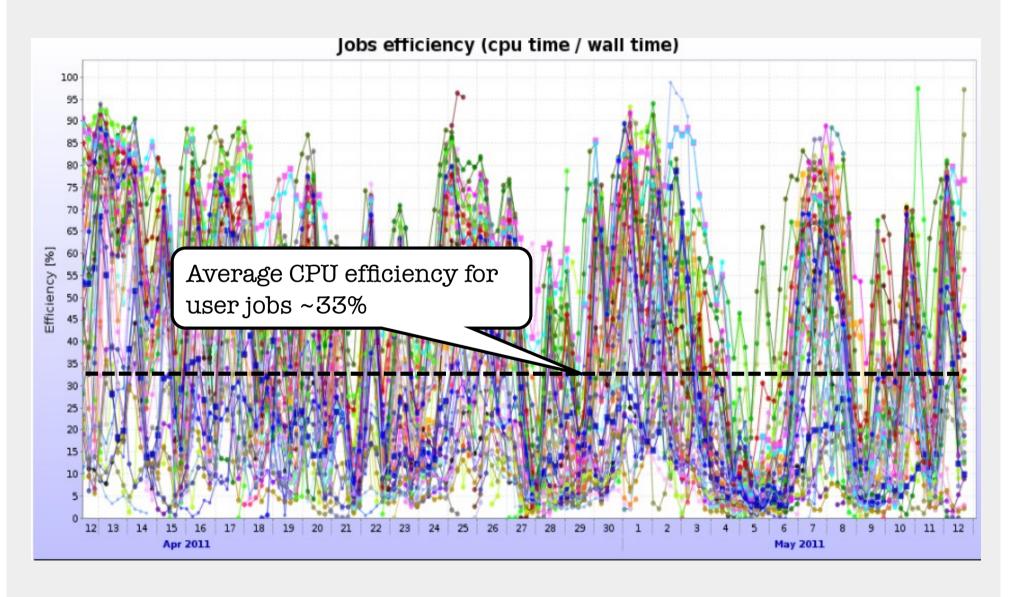
Data taking Data taking Online Online calibration calibration Pass 0 Immediate Reco+Calib Pass 1 Reco Complete Pass 1

Current implementation

SCHEDULED VS CHAOTIC ANALYSIS

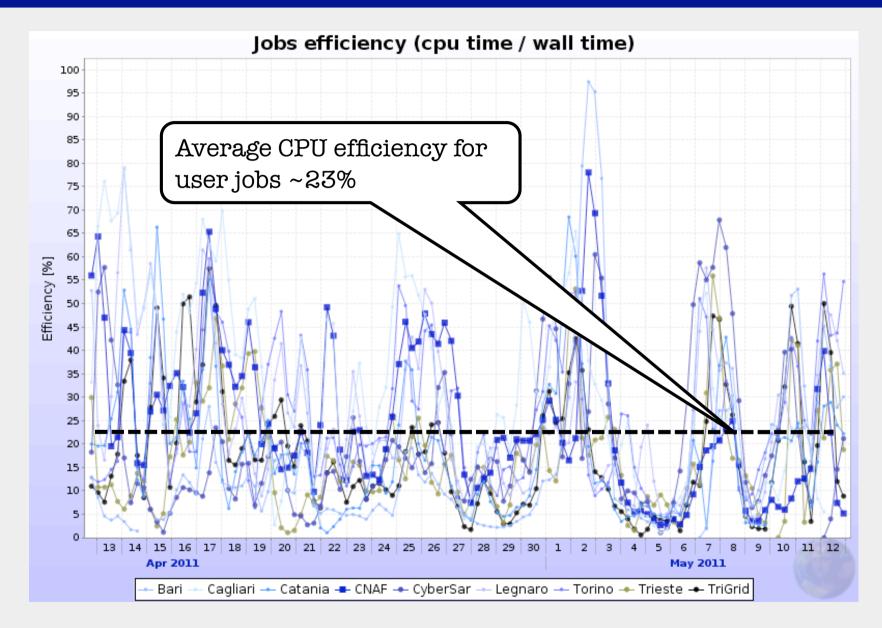
- Scheduled analysis means "analysis trains"
 - "Trains" of several independent "analysis tasks" to reduce number or reads
 - All tasks inherit from a common abstract interface
 - Run on ESD and AOD, may make heavy use of OCDB (conditions database).
- User analysis generally mean single tasks
 - A Master Job is generated e.g. by the AliEn Plugin during an interactive ROOT session.
 - The Master Jobs is split in a number o(100) of subjobs
 - Subjob usually run where data is located.
 - Subjob results are then merged either interactively or by a job.

Boldface red means remote data access.

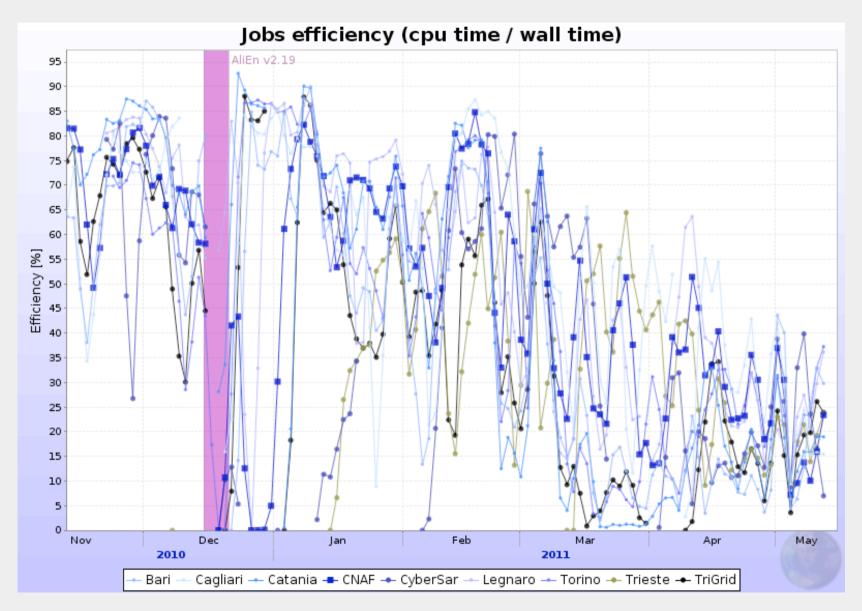


IMPACT ON CPU EFFICIENCY

- Remote data access reduces CPU efficiency
 - How much?
 - Unfortunately, other contributions to CPU efficiency loss appeared more or less at the same time
 - Difficult to decouple, see next slides
 - Also moving data around requires resources ("hidden" inefficiencies)
- Investigation and optimization will be one of the next priorities
 - E.g.: "best" SE discovery



CPU EFFICIENCY HISTORY



CPU EFFICIENCY HISTORY

CPU EFFICIENCY HISTORY

BUGS AND OTHER FEATURES

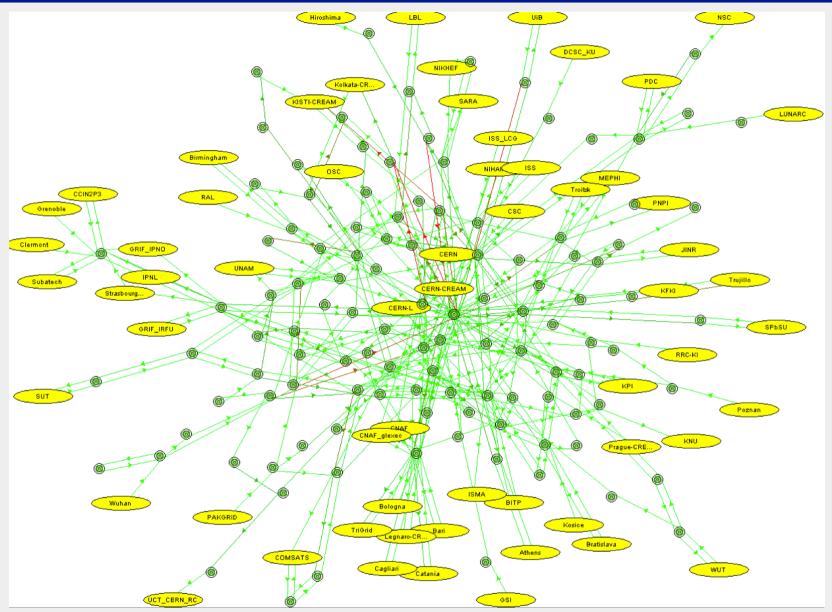
- SE selection mechanism briefly did not work
 - Small, transient effect
- Low-level bug in data access code
 - Read more data than actually needed
 - Bug fixed, will deploy shortly
 - Candidate for being one of the major sources of inefficiency (we'll see)
- "Hanging" jobs
 - Small contribution, and shrinking
- Composition of Analysis Trains can be optimized
 - First priority after QM

MITIGATION

Question: which are the best 4 Storage Elements for me to send my files to (or read my data from)?

Network topology

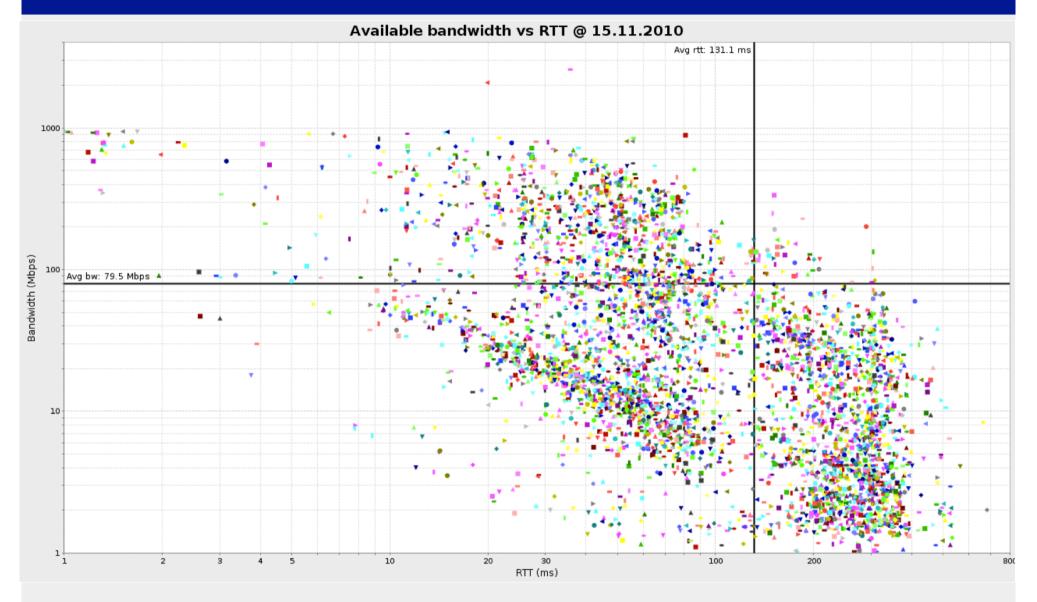
- Each SE is associated to a set of Ips (VO-Box, xrootd redirector and servers)
- Tracepath/traceroute between all sites
- Measure RTT for the full matrix


• SE "reputability"

■ "Demotion factor" =

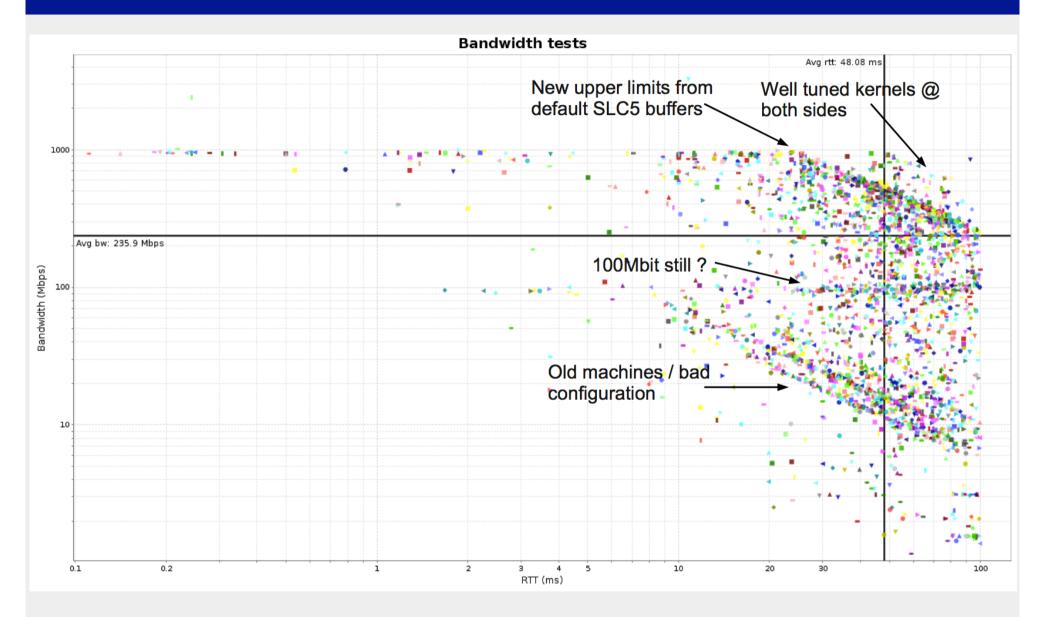
$$0.75 \times \frac{\text{\# failed tests}}{\text{\# tests last day}} + 0.25 \times \frac{\text{\# failed tests}}{\text{\# tests last week}}$$

NETWORK TOPOLOGY BY AS


SE METRICS IN ML

Demotion factor

Disk storage elements																					
	AliEn SE	Statistics			Xrootd info					Functional tests						Last day tests		Demotion			
SE Name	AliEn name	Size	Used	Free	Usage	No. of files	Type	Size	Used	Free	Usage	Version	add	ls	get	whereis	rm	Last OK test	Successful	Failed	factor
1. Bari - SE	ALICE::Bari::SE	893.4 TB	128.1 TB	765.3 TB	14.34%	3,019,005	File	1.878 PB	1.775 PB	106.2 TB	94,48%	20100510-1509_dbg	1					18.05.2011 18:01	12	0	0.2989
2. Bratislava - SE	ALICE::Bratislava::SE	112.8 TB	33.2 TB	79.6 TB	29.44%	985,709	File	112.8 TB	49.08 TB	63.69 TB	43.52%	20100510-1509_dbg						18.05.2011 18:02	12	0	3.869%
3. Catania - SE	ALICE::Catania::SE	100.4 TB	121 TB	-	120.5%	2,459,576	File	158.7 TB	134.4 TB	24.22 TB	84.74%	20100510-1509_dbg	1					18.05.2011 18:05	12	0	2.6799
4. CCIN2P3 - SE	ALICE::CCIN2P3::SE	112.4 TB	117.5 TB	-	104.5%	2,462,113	File	-	-	-	-							18.05.2011 18:04	12	0	
5. CCIN2P3 - SE2	ALICE::CCIN2P3::SE2	96 TB	23.53 TB	72.47 TB	24.51%	33,081	File	-	-	-	-							18.05.2011 18:01	12	0	
6. CERN - ALICEDISK	ALICE::CERN::ALICEDISK	849.6 TB	851.1 TB	-	100.2%	13,510,138	CASTOR	-	-	-	-							18.05.2011 18:04	12	0	
7. CERN - GLOBAL	ALICE::CERN::GLOBAL	-	0	1.863 TB	-	5,086	root	-	-	-	-							18.05.2011 18:01	12	0	0.2989
8. CERN - SE	ALICE::CERN::SE	20.49 TB	14.04 TB	6.451 TB	68.52%	3,633,414	File	20.46 TB	7.151 TB	13.31 TB	34.95%	20100510-1509_dbg	1					18.05.2011 18:02	12	0	
9. Clermont - SE	ALICE::Clermont::SE	179.9 TB	152 TB	27.94 TB	84.47%	3,268,605	File	179.9 TB	175.8 TB	4.024 TB	97.76%	20100510-1509_dbg	Use	Last	Last	. Last	Last	29.03.2011 06:01	. 0	12	1009
10. CNAF - SE	ALICE::CNAF::SE	873.3 TB	493.9 TB	379.4 TB	56.55%	8,430,394	File	873.3 TB	546.3 TB	327 TB	62.55%	20100510-1509_dbg	1					18.05.2011 18:01	12	0	1
11. CyberSar_Cagliari - SE	ALICE::CyberSar_Cagliari::SE	30.83 TB	33.46 TB	-	108.5%	869,975	File	92.71 TB	88.67 TB	4.035 TB	95.65%	20100510-1509_dbg	1					18.05.2011 18:03	12	0	
12. Cyfronet - SE	ALICE::Cyfronet::SE	10 TB	11.69 TB	-	116.9%	519,308	File	9.995 TB	9.556 TB	449.3 GB	95.61%	20100510-1509_dbg	1					18.05.2011 18:02	12	0	0.298%
13. FZK - SE	ALICE::FZK::SE	1.254 PB	649.1 TB	634.9 TB	50.55%	9,891,737	File	1.252 PB	824.7 TB	457.8 TB	64.3%	20100510-1509_dbg	1					18.05.2011 18:02	12	0	0.595%
14. Grenoble - DPM	ALICE::Grenoble::DPM	72 TB	6.112 TB	65.89 TB	8.488%	204,323	SRM	-	-	-	-							18.05.2011 18:01	12	0	1
15. Grenoble - SE	ALICE::Grenoble::SE	31 TB	20.09 TB	10.91 TB	64.8%	401,896	File	-	-	-	-		Use	Last	Last	Last	Last	18.04.2011 18:04	0	12	100%
16. GRIF_IPNO - DPM	ALICE::GRIF_IPNO::DPM	85.24 TB	82.96 TB	2.276 TB	97.33%	2,399,219	SRM	-	-	-	-		Use	Last	. Last	Last	Last	13.05.2011 00:05	0	12	95.54%
17. GRIF_IPNO - SE	ALICE::GRIF_IPNO::SE	153.1 TB	127.3 TB	25.84 TB	83.13%	3,305,002	File	153.1 TB	150 TB	3.181 TB	97.92%	20100510-1509_dbg	Use	Last	. Last	Last	Last	23.03.2011 02:04	0	12	100%
18. GRIF_IRFU - DPM	ALICE::GRIF_IRFU::DPM	171 TB	42.39 TB	128.6 TB	24.79%	782,932	SRM	-	-	-	-							18.05.2011 18:01	12	0	1.19%
19. GSI - SE	ALICE::GSI::SE	312.6 TB	331.5 TB	-	106%	6,196,054	File	297.1 TB	278.9 TB	18.23 TB	93.87%	20100510-1509_dbg	Use					18.05.2011 14:01	7	5	36.31%
20. GSI - SE2	ALICE::GSI::SE2	28 TB	459.8 GB	27.55 TB	1.604%	5,144	File	29.08 TB	1.964 TB	27.12 TB	6.751%	20100510-1509_dbg	1					18.05.2011 18:03	12	0	1
21. HHLR_GU - SE	ALICE::HHLR_GU::SE	200 TB	367.5 GB	199.6 TB	0.179%	5,724	File	-	-	-	-		Use	Last	Last	. Last	Last	04.04.2011 14:07	0	12	100%
22. Hiroshima - SE	ALICE::Hiroshima::SE	79 TB	42.03 TB	36.97 TB	53.2%	1,208,761	File	78.78 TB	54.15 TB	24.63 TB	68.73%	20100510-1509_dbg	1					18.05.2011 18:02	12	0	
23. IHEP - SE	ALICE::IHEP::SE	35.55 TB	9.147 TB	26.4 TB	25.73%	596,354	File	36.38 TB	9.548 TB	26.83 TB	26.25%	20100510-1509_dbg	1					18.05.2011 18:06	12	0	0.2989
24. IPNL - SE	ALICE::IPNL::SE	36 TB	50.62 TB	-	140.6%	1,127,971	File	37.3 TB	36.51 TB	801.6 GB	97.9%	20100510-1509_dbg	Use	Last	. Last	Last	Last	01.05.2011 00:03	0	12	1009
25. ISS - FILE	ALICE::ISS::FILE	140.5 TB	109.2 TB	31.34 TB	77.69%	3,511,205	File	140.5 TB	134.8 TB	5.722 TB	95.93%	20100510-1509_dbg	,					18.05.2011 18:01	12	0	
26. ITEP - SE	ALICE::ITEP::SE	100 TB	41.38 TB	58.62 TB	41.38%	1,099,659	File	99.93 TB	44.75 TB	55.18 TB	44.78%	20100510-1509_dbg	1					18.05.2011 18:03	12	0	0.298%
27. JINR - SE	ALICE::JINR::SE	112.3 TB	80.44 TB	31.87 TB	71.62%	3,564,624	File	149.1 TB	85.9 TB	63.2 TB	57.61%	20100510-1509_dbg	1					18.05.2011 18:01	12	0	0.298%
28. KFKI - SE	ALICE::KFKI::SE	39.34 TB	27.02 TB	12.32 TB	68.68%	780,936	File	36.38 TB	35.32 TB	1.055 TB	97.1%	20100510-1509_dbg	1					18.05.2011 18:03			1
29. KISTI_GSDC - SE	ALICE::KISTI_GSDC::SE	100 TB	31.88 TB	68.12 TB	31.88%	827,924	File	101.8 TB	47.89 TB	53.88 TB	47.06%	20100510-1509_dbg	1					18.05.2011 18:03	11	1	10.42%
30. KISTI - SE	ALICE::KISTI::SE	49.95 TB	35.49 TB	14.46 TB	71.05%	1,049,511	File	49.95 TB	35.39 TB	14.55 TB	70.86%	20100510-1509_dbg	1					18.05.2011 18:05	12	0	
31. Kolkata - SE	ALICE::Kolkata::SE	73.24 TB	15.62 TB	57.62 TB	21.33%	502,177	File	70.46 TB	33.97 TB	36.48 TB	48.22%	20100510-1509_dbg	1					18.05.2011 18:03	12	0	
32. Kosice - SE	ALICE::Kosice::SE	41.84 TB	34.15 TB	7.691 TB	81.62%	1,020,050	File	61.84 TB	46.61 TB	15.23 TB	75.37%	20100115.1117_dbc						18.05.2011 18:02	12	0	0.595%



AVAILABLE BANDWIDTH VS RTT

NETWORK WITHIN CONTINENTS

OTHER INTERESTING ITEMS

- Data staging to AAF
 - Virtual Mass Storage by xrootd
 - Automatic staging or SE access?
- Xrootd advanced features
 - Not all are used by ALICE
- Catalogue optimization
 - More files than foreseen
 - Automatic "crawlers" to ensure consistency

CONCLUSIONS

The ALICE Computing model is evolving

 Remote access to data is becoming an unavoidable, and maybe desirable, feature

The general model works

- Both for heavy scheduled activity (PbPb processing), massive chaotic analysis (QM preparation) and combinations of the two.
- Also, sites performed brilliantly

The storage was able to cope with the load

- Never tested before in this I/O regime
- However, there is much room for improvement
 - User tasks show markedly low CPU/Wall time efficiency and high memory footprint
 - Will probably need some new tools to diagnose new and exciting large-scale effects

