
Software performance
optimization

Peter Elmer
Princeton University

Workshop CCR INFN-Grid, La Biodola
17 May, 2011

2Workshop CCR INFN-Grid, La BiodolaP. Elmer 17 May, 2011

Things I'll talk about
● In this presentation I'll talk about some technical aspects of

software performance optimization

● I work on CMS and thus this is (mostly) about our experience
and plans in CMS

● I'll be talking about:

– Compiler (and OS) version evolution

– The transition to 64bit

– Multicore and “whole node” job scheduling
● A number of people in CMS have contributed to this work:

Giulio Eulisse, Vincenzo Innocente, Chris Jones, Shahzad
Muzaffar, Lassi Tuura + many CMS software developers

3Workshop CCR INFN-Grid, La BiodolaP. Elmer 17 May, 2011

Things I won't talk about
● I won't be talking about the I/O part of the performance

optimization

– see the talk by Giacinto
● I won't talk here about “Physics Choice” software optimization

– I note however that the combination of experience with data taking
(at LHC) and actually hitting resource limits in 2011 (unlike
2010) may lead to more of this type of optimization this year
and next (offset however by pile-up!)

● I won't talk much about “routine” performance optimization we
are doing with the software (often memory mgmt issues,
poorly implemented or redundant algorithms, etc.) or the
tools we use to do this: see older talks by me or the other
CMS people, google “igprof sourceforge”, etc. (or ask me
later)

4Workshop CCR INFN-Grid, La BiodolaP. Elmer 17 May, 2011

Transition to gcc4/SLC5
● (Going backwards in time a bit for some context!) Approximately two

years ago the LHC experiments (including CMS) went through a
transition from SLC4 to SLC5 and from gcc34 to gcc43.

● The computing centers transitioned to SLC5 on WN's, and specifically to
SLC5/64bit for the OS

● CMS transitioned from “slc4_ia32_gcc345” builds to “slc5_ia32_gcc434”
(and we could run jobs of both types on the SLC5/64bit WN's)

– Over time people transitioned to using the newer software releases and
slc5_ia32_gcc434

● The gcc3.x to gcc4.x transition was a large one in terms of internal
evolution: in some sense it represents the transition from a “cathedral
model” to a “bazaar” model

– We chose gcc43 rather than gcc41 (the RHEL5 system compiler) as it was the
“current” compiler version at that time. there were o(8-10%) performance
improvements in typical applications.

5Workshop CCR INFN-Grid, La BiodolaP. Elmer 17 May, 2011

Transition gcc4/SLC5
● The transition model was in which the WN's move forward (in this case to

SLC5/64bit) and the experiments (including CMS) “catch up” by
transitioning the jobs we run on those WN's over time from
slc4_ia32_gcc345 to slc5_ia32_gcc434.

● As “CMS moves” from the old architecture to the new one we exploit
better the hardware

– “Production” activities (MC production, data reconstruction) move faster than
“analysis” activities

● Obviously the missing pieces here are:

– Transitioning to native 64bit builds

– Transitioning to newer compiler versions and exploiting newer features of the
compiler and C++ (e.g. gcc 4.6.0 was released 6 weeks ago)

– An important constraint we have is that we want the CMS High Level Trigger
(online) to use the same architecture as offline “production” activities, this
constrains us to new build architecture changes during shutdowns (once/year)

6Workshop CCR INFN-Grid, La BiodolaP. Elmer 17 May, 2011

64bit (AKA x86-64)
● Advantages:

– Better architecture: additional registers, better calling convention,
SSE FP math support, reduced -fPIC cost

– CMS sees typical CPU performance improvements from 18%
(Geant4) to 30% (reconstruction, HLT)

● Disadvantages:

– Somewhat more memory hungry, typically 25-30% in CMS (see
next slides for additional notes)

– Some coding assumptions are no longer valid (e.g. data sizes) thus
the transition requires a bit more care

– SSE math (and IEEE754 compliance) results in somewhat slower
transcendental math functions from linux libm (software
implementation)

7Workshop CCR INFN-Grid, La BiodolaP. Elmer 17 May, 2011

Memory footprint myth-busting
● An early observation (much

quoted) was that the VSIZE
doubles for the 64bit
applications, while the RSS
increase is much more modest
(25-30%) But where does any
of this increase come from?

● The actual code (text/data) size
itself only increases by a small
amount (~5%) from 32bit to
64bit

● Some data increases come from
the doubled pointer size and
alignment padding of data
structures, but these don't
explain the VSIZE.

8Workshop CCR INFN-Grid, La BiodolaP. Elmer 17 May, 2011

Memory footprint myth-busting
● It turns out there are two effects:

● First, recent versions of the binutils
linker will by default align code pages
to 2MB. Thus there is extra “padding”
in the virtual memory space. We have
500+ shared libraries, so this is a big
effect.

● Second, since at 64bit the virtual
memory space is huge, many things
(e.g. glibc when reading the locale
file) now just memory map files into
the memory space and let the OS do
the work of paging things in/when
needed.

VSIZE is a really poor estimator for the physical memory needs or usage
of a process, especially for 64bit processes.

9Workshop CCR INFN-Grid, La BiodolaP. Elmer 17 May, 2011

CMS and 64bits
● As of Jan2011 the CMS has transitioned to building only native

64bit software in the current releases and this is deployed:

– Online (High Level Trigger) at CERN

– Offline reconstruction, simulation and analysis
(everywhere)

– Computing components and websites (mostly at CERN)
● The rapid increase in data during 2011 is also helping to pull

people doing analysis forward onto the newer (64bit-only)
software releases

● (Victory! What next?)

10Workshop CCR INFN-Grid, La BiodolaP. Elmer 17 May, 2011

CPU clock speeds/Multicore

11Workshop CCR INFN-Grid, La BiodolaP. Elmer 17 May, 2011

Multicore CPU's – “Phase 0”
● The current model for HEP applications to exploit multicore

CPU's is very simplistic: we exploit the “job” (and event) level
parallelism and (typically) launch one application process per
core

● The local schedulers matched this by configurations to schedule
independently (and incoherently) an individual “job” per core

● Hyperthreading and pilot jobs are only minor caveats to the
above. The “quantum” of work has become something of order
“one batch slot/core”.

● This strategy “works” in that we are able to exploit multicore
CPU's reasonably efficiently on the kinds of multicore
machines deployed today, but there are many consequences
(next slide)

12Workshop CCR INFN-Grid, La BiodolaP. Elmer 17 May, 2011

Multicore CPU's – “Phase 0” Consequences

● The simple “Phase 0” job-level parallelism has consequences:

– The memory needs increase with each generation of CPU

– The number of independent readers and writers (to local disk, to
remote storage) increases with each generation of CPU

– An ever increasing numbers of independent and possibly incoherent
jobs running on any given piece of physical hardware.

– Each of these running “jobs” commands an ever tinier slice of
resources and do not explicitly share resources they could share

● And on top of that, there are a number of reasons to believe that
this trivial parallelism won't scale efficiently on the CPU's
themselves.

● Note that we have been going down the “~one job/core” route
simply because we couldn't do anything else, it isn't a “natural”
way to use these resources for high throughput.

13Workshop CCR INFN-Grid, La BiodolaP. Elmer 17 May, 2011

Can we do better?

● For sure.

● We cannot, however, easily jump to a properly and perfectly
parallelized application that directly supports exploitation of
multiple cores.

● We have been doing investigations into how to do that, but it
would be a large undertaking requiring significant code
changes.

● There is however an intermediate solution (“Phase 1”) in which
we can do better than the current situation.

14Workshop CCR INFN-Grid, La BiodolaP. Elmer 17 May, 2011

Typical HEP memory footprint

15Workshop CCR INFN-Grid, La BiodolaP. Elmer 17 May, 2011

Typical HEP memory footprint

16Workshop CCR INFN-Grid, La BiodolaP. Elmer 17 May, 2011

Exploiting Copy on Write
● Much of the common constants and data can actually be

loaded into our applications very early
● If you fork a new process at that point the kernel is

actually smart enough to share common data memory
pages between the parent and children

● The kernel “un-shares” the memory pages only when
one of the processes writes to them

● Subsequent memory allocations (e.g. “event” data) in
either process wind up on non-shared pages

17Workshop CCR INFN-Grid, La BiodolaP. Elmer 17 May, 2011

“Multi-processing” applications

18Workshop CCR INFN-Grid, La BiodolaP. Elmer 17 May, 2011

Forking: memory sharing

19Workshop CCR INFN-Grid, La BiodolaP. Elmer 17 May, 2011

Forking: memory sharing

Greatly reduced physical
memory needs

20Workshop CCR INFN-Grid, La BiodolaP. Elmer 17 May, 2011

Forking: throughput

21Workshop CCR INFN-Grid, La BiodolaP. Elmer 17 May, 2011

Another memory accounting issue

22Workshop CCR INFN-Grid, La BiodolaP. Elmer 17 May, 2011

“Whole Node” scheduling
● (Obviously) the one natural unit in the system is the “whole node”, where

that is defined as: the physical thing running one (unvirtualized) copy
of the OS and sharing a set of resources (CPU, disk, network, etc.)
Using “Whole node” scheduling as the resource “quantum” has obvious
benefits:

– The applications explicitly take over the management of the sharing of
resources within the “whole node” quantum of resources.

– It is compatible with the current “phase 0” applications as well as
more explicitly multicore-aware applications (via forking,
threading, etc.) optimized over time to maximize throughput

– It also makes a number of data/workflow management optimizations
possible: I/O caching, local merging, etc.

– Sites only need to defend the whole node, not individual processes.

– A move to a proper “whole node” accounting for CPU/memory use,
etc. recognizes the role of the OS in optimizing access to resources

23Workshop CCR INFN-Grid, La BiodolaP. Elmer 17 May, 2011

CMS Multicore Strategy
● Phase 0 – independent jobs on each core (+ hyperthreading?)

● Phase 1 – development and deployment of CMS framework and
WM system to fork sub-processes after loading bulk conditions

– Advantages: reduce memory needs and more flexibility
for data/workflow mgmt (with only limited changes to
software)

– First steps with sites, grid providers, etc. to multicore
● Phase 2 – deployment of more fine grained parallelism

– More difficult, requires greater changes to our software

– Impacts software development model, may require more
sophisticated software development in some cases

ThisThis
yearyear

NextNext
YearYear
AndAnd
beyond?beyond?

24Workshop CCR INFN-Grid, La BiodolaP. Elmer 17 May, 2011

How does “whole node” affect Data Mgmt?

● Changes the system working point by an “order of magnitude”:
the number of schedulable running “entities” within the system
will drop by a factor of 4-8 (today), more later, and will become
approximately constant in each site going forward

● The resources (local disk, memory, etc.) managed by a (pilot)
job start to become significant, providing many opportunities
for optimization:

– Stage-in to and mgmt of local disk, suddenly we are “memory
rich”

– coordinated/coherent I/O access across activity “node”

– reduced external connections&streams

– local output merging (or direct write of combined file)

– “backfill” CPU intensive activities if necessary

25Workshop CCR INFN-Grid, La BiodolaP. Elmer 17 May, 2011

Files sizes and transfer
● Hand in hand with a change to “whole node” scheduling it is

important to make sure we can scale file sizes at the same
time

● We removed the 2GB limit some years ago, but in practice the
reliability of the system is such that we've not gone very
much beyond that.

● The limitations come from the fact that any error during file
transfers requires the transfer to restart from scratch. This is
seen as the main bottleneck preventing us from increasing
significantly the file size.

● CMS Request: we would like the appropriate changes to be
made to FTS and/or the storage implementations to avoid
restarting transfers from scratch on errors (when possible)

26Workshop CCR INFN-Grid, La BiodolaP. Elmer 17 May, 2011

“Whole Node” Job Submission Task Force

● Atlas, LHCb and Alice are also interested in “whole node” job
submission, not just CMS

● Atlas and LHCb (which share their application framework)
also have the “forking” functionality to share memory

● Alice is interested in using PROOF-Lite

● Since all of the experiments expressed interest in this, the
LCG-MB set up a “Whole Node Job Submission” task force
(I am also the chair of that task force, however it is multi-
experiment).

● Mailing list: whole-node-task-force@cern.ch

(or send me a mail at Peter.Elmer@cern.ch)

27Workshop CCR INFN-Grid, La BiodolaP. Elmer 17 May, 2011

Whole-Node Task Force Mandate

(Reports to LCG-MB)

28Workshop CCR INFN-Grid, La BiodolaP. Elmer 17 May, 2011

Other investigations
● (Returning from multicore discussion to compiler discussions)

● In CMS we expect that we will be able to make another
compiler version transition at the end of the year (again, this
is limited for us by our desire to keep our online/trigger in
synch with the offline)

● At the moment we are investigating a number of things: gcc46,
c++0x, large (and/or reordered) shared libraries,
vectorization, link-time-optimization, symbol visibility, etc.

● Ask again at the end of the year to see what, if anything, we
were able to deploy for these things and what we learned.

29Workshop CCR INFN-Grid, La BiodolaP. Elmer 17 May, 2011

Summary
● CMS has recently completed its transition to fully 64bit

software, which brought a number of improvements.

● We (and the other LHC experiments) are interested in better
exploitation of multicore machines. We have a first
implementation (using forking) of an application which does
this.

● The accounting of process memory needs (in particular using
VSIZE and/or RSS) needs to be carefully rethought, due to
both 64bit and multicore.

● Deployment of “whole node” job scheduling, and associated
system accounting improvements, is a key first ingredient to
deploying multicore-aware applications.

30Workshop CCR INFN-Grid, La BiodolaP. Elmer 17 May, 2011

Pictures I have to show....

… because I swiped some slides for this talk from Giulio Eulisse (who
in any case swiped things from my earlier talks, and so on).

CMS 64bit transition! CMS multicore plans!

(Thanks to Giulio...)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

