
Report dall'ultimo Lustre User Group:
esperienze di grandi centri di calcolo e

prospettive

Giacinto DONVITO
Università e INFN -- BARI

Outlook

Lustre:
History
Status
Future

Reports from sites@LUG2011
Interesting hints@LUG2011
Emergency plan
Conclusions

Lustre: History

Lustre 1.0 released in 2003 by Cluster File Systems
(founded by Peter Braam, n.d.r)
Cluster File Systems was acquired by Sun
Microsystems in October 2007
November 2008, Braam left Sun Microsystems
April 2009: SUN was acquired by Oracle Corporation
Lustre 2.0.0, released in August 2010
September 2010: Oracle will not continue developing
2.x lustre tree
End 2010 beginning 2011 few Open source community
born in order to go on developing Lustre 2.1

About Lustre

"Lustre is recognized as a leading high performance
clustered file system in High Performance Computing with
over 60% share of the Top 100 systems in the Top 500,"
said Earl Joseph, Research Analyst at IDC. "Peter Braam
and Peter Bojanic are recognized as key leaders of the
Lustre community and by reuniting them, there's no
question that this is a very positive move for the broader
HPC community and that it will help to ensure that Lustre
will continue to be a key element of HPC data storage
environments."

November 2010: Xyratex hired Peter Braam

Open source communities
HPCFS (www.hpcfs.org):

Members: FERMILAB, XIOTECH, WHAM CLOUD, INTEL,
PSEC, SGI, NASA, PNL, CHEVRON/TEXACO, SLAC-
STANFORD, INDIANA UNIVERSITY, SANDIA, LBL, NRL,
MELLANOX, ROUTING DYNAMICS, HP, DELL
status: will merge with opensfs

OpenSFS (www.opensfs.org):
Members: LLNL, ORNL, DDN, Cray, SGI

EOFS (www.eofs.org):
European Initiative
Members: Bull, CEA, Data Direct Networks, Forschungszentrum
Jülich, GSI, Hewlett-Packard, HPCFS, Leibniz Rechenzentrum,
ParTec CCC, T-Platforms, Universität Zürich, Universität
Paderborn, Whamcloud, EUROTECH, Xyratex Technology
Limited

Release status

2.1 Release coming:
Whamcloud had much of the necessary infrastructure in
place to create Lustre releases and so volunteered to
host 2.1 community release (git, JIRA, gerrit, jenkins,
maloo etc)
2.1 Release meetings open to anyone
Whamcloud contributor agreement means that no
single organization will ever hold Lustre copyright
again
All three community groups (EOFS, HPCFS and
OpenSFS) are in support of this approach

Release status

2.1 Release coming:
RHEL6 Server and Client support
Async journal commits by default

Added in 1.8.2; turned off by default
Already used in production at many sites (LLNL,
ORNL, DDN sites)

Ext4 by default
2.x performance to match\exceed 1.8.x

SMP Scaling\IO performance

Release status
Interest and collaboration

Broad community interest in release
25 different organizations registered on mailing list (at least)
11 different organizations represented at meetings
3 different organizations submitted patches (LLNL, ORNL, Xyratex)
4 different organizations offered to help with testing (Bull, Cray,
LLNL, ORNL)

Lustre 2.1 is relatively simple
The scope of the release was already defined and most of the work was
done

It will be much harder to manage release content for future releases across
multiple stakeholder groups

Need to find a workable long-term model
Whamcloud will be producing future 2.x releases for its customers

Core Lustre code will be open to all and available to any other releases

Lustre: Future of the releases
Oracle will continue to produce Lustre 1.8.x releases

Lustre
2.1 due
out this
summer
Lustre
2.x
releases
TBD

Report from sites:

Capacity: fit the use cases that need performance
Scratch
Hot dataset cache
Semi-persistent library
Staging and buffering for WAN transfer

Consistency: use cases increase variability
Some demand capability (scratch, hot cache)

Significantly more random access
Some are more about capacity (library, staging)

More sequential access
Cost: Always an issue

On a fixed budget, I/O robs compute
Capability costs compute resources (more I/O
nodes)

National Climate Computing Center

Phase 1: Cray
XT6

2,576 AMD
Opteron 6174

Phase 2: Cray
XE6

5,200 AMD
Opteron 16-
core

Fast Scratch
18x DDN SFA10000
2,160 active 600GB
SAS 15000 RPM
disks
36 OSS
InfiniBand QDR

Report from sites:
National Climate Computing Center

Long Term Fast
Scratch

8x DDN SFA10000
2,240 active 2TB
SATA 7200 RPM
disks
16 OSS
InfiniBand QDR

120 Disk per DDN system
280 Disk per DDN system

Report from sites:
National Climate Computing Center

Gaea filesystem architecture

!"#

$%!"#

$&%'# $()*+#

,&%'# -.'#

Report from sites:

User prospective:
Performance

Model initialization took 15 mins before now it takes
8 mins.

Reliability
Generally it’s a reliable and stable filesystem.

Size
Scalability allow for large filesystems, less data
movement, and larger experiments.

National Climate Computing Center

Report from sites:

User prospective:
They are not insulated from the bad practices of misbehaving users.
Do not have the necessary tools to manage the filesystems and user
behavior.

Quotas
Slowness and potential issues with using standard unix commands

du, ls, find, etc.
Confused with problems in their jobs resulting from OST or OSS
failures.
Users don’t know if the I/O error they receive in their output is
permanent or transient.
If parts of the filesystem are offline, users and management want the
ability to quickly see this and adjust the running workload to it.

Ideally, this would be automated.

National Climate Computing Center

 Copyright 2011 FUJITSU LIMITED Copyright 2011 FUJITSU LIMITED Copyright 2011 FUJITSU LIMITED

Lustre Based File System

Shinji Sumimoto
Fujitsu Limited
Apr.12 2011

For Maximizing CPU Utilization
by Minimizing File IO Overhead

 Copyright 2011 FUJITSU LIMITED 3

K computer: System Configuration

Mitsuo Yokokawa (RIKEN), WPSE2010

 Copyright 2011 FUJITSU LIMITED 4

K computer: Compute Nodes

Mitsuo Yokokawa (RIKEN), WPSE2010

L2$: 6MB

Goals of Fujitsu’s Cluster File System: FEFS
FEFS(Fujitsu Exabyte File System) for peta scale and exa-scale
supercomputer will achieve:
Extremely Large

Extra-large volume (100PB~1EB).
Massive number of clients (100k~1M) & servers (1k~10k)

High Performance
Throughput of Single-stream (~GB/s) & Parallel IO (~TB/s)
Reducing file open latency (~10k ops)
Avoidance of IO interferences among jobs.

High Reliability and High Availability
Always continuing file service while any part of system are broken
down.

FEFS is optimized for utilizing maximum hardware performance by
minimizing file IO overhead, and based on Lustre file system.

 Copyright 2011 FUJITSU LIMITED Copyright 2011 FUJITSU LIMITED Copyright 2011 FUJITSU LIMITED

Lustre Based File System

Shinji Sumimoto
Fujitsu Limited
Apr.12 2011

For Maximizing CPU Utilization
by Minimizing File IO Overhead

 Copyright 2011 FUJITSU LIMITED Copyright 2011 FUJITSU LIMITED Copyright 2011 FUJITSU LIMITED

Lustre Based File System

Shinji Sumimoto
Fujitsu Limited
Apr.12 2011

For Maximizing CPU Utilization
by Minimizing File IO Overhead

 12

Lustre Extension of FEFS

Targets Issues Extension

Large Scale
FS

File Size, Number of Files,
Number of OSSs etc.

File Size > 1PB to 8EB, Number of Files: 8 Exa
Number of OSSs: Thousands of OSSs

Performance TSS Response TSS Priority Scheduling

Meta Access
Performance

Common Upgrading of Hardware Specification （Communication, CPU,
File Cache, Disk)
Reducing Software Bottleneck

Local File
System

MDS Distribution： Allocating Dedicated File System for each
JOB

Global File
System

Fairness among Users： QOS Scheduling for Users

IO Separation among JOBs
for Local File System

IO Zoning: Processing IO nodes just below the computing nodes
Priority Scheduling

Availability Recovering Sequence Recovering Sequences with Hardware Monitoring Support

Several functions are extended for our requirements.

Copyright 2011 FUJITSU LIMITED

 Copyright 2011 FUJITSU LIMITED 13

Requirements for FEFS Lustre Extension(1/2)

Features Current
Lustre

2012
Goals

System Limits Max file system size
Max file size
Max #files
Max OST size
Max stripe count
Max ACL entries

64PB
320TB
4G
16TB
160
32

100PB
1PB
32G
100TB
10k
8191

Node Scalability Max #OSSs
Max #OSTs
Max #Clients

1020
8150
128K

10k
10k
1M

Block Size of ldiskfs (Backend File System) 4KB ~512KB

Patch-less Server NA Support

13

 Copyright 2011 FUJITSU LIMITED

Requirements for FEFS Lustre Extension(2/2)

Features Current Lustre 2012 Goals
Big-endian support NA Support

Quota OST storage limit <= 4TB No limitation

Directory Quota NA Support

InfiniBand bonding NA Support

Arbitrary OST assignment NA Support

QOS NA Support

14 Copyright 2011 FUJITSU LIMITED

19

Fair Share QoS

User A

User A

User B
Limit Maximum
IO usage rate

Fair Share

Login Nodeド File Server

User A
User A

User B

Without Fair Share QoS

With Fair Share QoS

Not Fair

Single User Multi User

Single User Multi User

IOBandwidth

Huge IO

Copyright 2011 FUJITSU LIMITED

 Copyright 2011 FUJITSU LIMITED Copyright 2011 FUJITSU LIMITED Copyright 2011 FUJITSU LIMITED

Lustre Based File System

Shinji Sumimoto
Fujitsu Limited
Apr.12 2011

For Maximizing CPU Utilization
by Minimizing File IO Overhead

Best Effort QoS
Fair Share among users

Single node occupying IO bandwidth Sharing IO bandwidth among Multi-Nodes

S
in
gle
 S
e
rve
r

M
u
lti S
e
rve
rs

Single
Client

Single server

IO BW

Max BW

Multi-server

Mult-Client

Copyright 2011 FUJITSU LIMITED 20

 17

IO Zoning: IO Separation among JOBs
Issue: Sharing disk volumes, network links among jobs cause IO
performance degradation because of their conflicts.
Our Approach: Separating of disk volumes, network links among
jobs as much as possible.

Job A Job B Job A Job B

× w/ IO Conflict ○ w/o IO Conflict

IO Node

Local Disk
Job A File

Job B File

Z

XY

Copyright 2011 FUJITSU LIMITED

Lustre WAN @ 100GBit Testbed

Michael Kluge
michael.kluge@tu-dresden.de

Robert Henschel, Stephen Simms
{henschel,ssimms}@indiana.edu

Lustre WAN @ 100GBit Testbed

16*8 Gbit/s

1
6
*
2
0

G
b
i
t
/
s

D
D
R

I
B

5
*
4
0

G
b
i
t
/
s

Q
D
R

I
B

16*8 Gbit/s

100GbE

Lustre WAN @ 100GBit Testbed

!   24 clients on each site

!   24 processes per client

! stripe size 1, 1 MiB block size

! Direct I/O

16*8 Gbit/s

1
6
*
2
0

G
b
i
t
/
s

D
D
R

I
B

5
*
4
0

G
b
i
t
/
s

Q
D
R

I
B

16*8 Gbit/s

100GbE

Writing to
Freiberg

10,8 GB/S

Writing to
Dresden

11,1 GB/S

Lustre WAN @ 100GBit Testbed

0,001

0,010

0,100

65536 131072 262144 524288 1048576 2097152 4194304 8388608 16777216

re
qu

es
t l

at
en

cy
 in

 s
ec

on
ds

file size in byte

open+write request latencies @ 400km

Stripe 1
Stripe 2
Stripe 4
Stripe 8
Stripe 16

!"#$%&'(

Lustre/HSM Binding

2007 – CFS times
Never ending Architecture

2008-2009 – Sun era
Designing and Lustre internals learning

2010 – Oracle times
Coding, hard landing

2011 – Nowadays
Debugging, Testing, Improving

Lustre/HSM Binding

Lustre/HSM
Binding

Lustre/HSM Binding

Component: Copytool
It is the interface between Lustre and the HSM.
It reads and writes data between them. It is HSM specific.
It is running on a standard Lustre client (called Agent).
2 of them are already available:

HPSS copytool. (HPSS 7.3+). CEA development
which will be freely available to all HPSS sites.
Posix copytool. Could be used with any system
supporting a posix interface, like SAM/QFS.

More supported HSM to come
DMF
Enstore

Lustre/HSM Binding
Component: PolicyEngine Robinhood

PolicyEngine is the specification
Robinhood is an implementation:

Is originately an user-space daemon for monitoring
and purging large filesystems.
CEA opensource development: http://robinhood.sf.net

Policies:
File class definitions, associated to policies
Based on files attributes (path, size, owner, age,
xattrs…)
Rules can be combined with boolean operators
LRU-based migr./purge policies
Entries can be white-listed

Lustre/HSM Binding

Component: Coordinator
MDS thread which "coordinates" HSM-related actions.

Centralizes HSM-related requests.
Ignore duplicate request.
Control migration flow.
Dispatch request to copytools.
Requests are saved and replayed if MDT crashes.

View file states
lfs hsm_state <FILE>
$ lfs hsm_state /mnt/lustre/foo
/mnt/lustre/foo

states: (0x00000009) exists archived

Lustre/HSM Binding

Will start code landing as soon as 2.2
branch is available

ZFS/BTRFS & Lustre

Evaluate pooling at the filesystem layer
Avoids expensive RAID controllers
Provides additional features
Copy-on-write
Built-in data integrity
Very large filesystem limits
Late 2011 requirement:

50PB, 512GB/s – 1 TB/s
At a price we can afford

COW sequentializes random writes
No longer bound by drive IOPS

Zero fsck time. On-line data integrity and error handling

Australian NCI National Facility
Current machine “vayu”

~1500 nodes, ~12k Nehalem cores
26 OSS's, 4 MDS's

Root on Lustre – Why?
Simplicity

Fewer things to fail
No NFS or local disks involved Reliability and Scalability

Use centralised scalable and reliable hardware
If Lustre is down then jobs are hung anyway. May as well
put the OS there too

Maintainability
One rsync from the master OS image to the OS image on
Lustre updates every node immediately
Unlimited space for OS packages, OS variations, ...

Australian NCI National Facility
Metadata Speed – The Problem:

Very slow “ls -l”
Uncached “ls -altrR ~” runs at ~100 files/second
Client-side caches help, but only when nodes aren't busy
Daily rsync backups taking >24hrs

Metadata Speed – Root Cause:
MDS? No
Loads low
All fs data fits entirely in ram

MDT's are a 4k i/o write-only media after a while
OSS's? Yes

Very busy OSS's
Streams to read and write-through caches aggressively pushing
ldiskfs inodes/dentries out of OSS ram

Australian NCI National Facility
Metadata - vfs_cache_pressure

What is vfs_cache_pressure?
Balance between pages (data) cached and inodes/dentries (ldiskfs
metadata) cached
=100 by default =0 means NEVER reclaim any inodes/dentries

Dangerous! Scary! Can OOM!
But...

inodes are 912 bytes, dentries are 216 bytes - Tiny! 1G of slab ram on
1 OSS ~= 1M files
Low mem OSS's shouldn't use read or write-through caches
inode/dentry usage grows slowly with fs

Result
20 to 40x speedup of “ls -lR” and >10x speedup of rsync backups
Typical “ls -altrR ~” on an un-cached client is ~4k files/s (when client
cached is 32k files/s)
Repeatable day to day. ie. Caches are being preserved
Problem solved!

Few other report
Work on going to increase the number of OSTs stripes on
each file (at the moment it is 160 OSTs)

This is related also to the max size of a single file:
320TB
and to the max bandwidth on a single file

Work on going to increase
the performance in
creating file:

at the moment it is
about 20’000/s

Metadata improvement by
means of async&bulk RPC
call

Conclusions & personal ideas
Open Source Community is growing around medium-big
company
Big Computational centres are directly involved into
deploying and developing

Often this centres have different requirement than HEP
community

2.1 it is almost done
it will available around summer => this will be needed
in case of SL6 migration

the real milestone will be 2.2 release
if this will be released, public available and supported
this will be a “long term release”

 expected at the end of this year

Emergency plan??

Fall back to few ad-hoc (HEP) solution:
dCache? EOS/Xrootd?

Cons:
Support issues
Users communities
Often users requires (good) posix
compliance

If possible, it will be preferable to use widely
used, open source, well maintained solution ...

Emergency plan??
Hadoop (HDFS):

It is developed till 2003 (born @google)
It is a framework that provide: file-system, scheduler
capabilities, distributed database
Fault tolerant

Data replication
DataNode failure is ~transparent
Rack awareness

Highly scalable
Using FUSE => few posix call supported

roughly “all read operation” and only “serial write
operations”

Web interface to monitor the HDFS system
Java APIs to build code that is “data location aware”
CKSUM at file-block level
HDFS RAID (2.2 space used == 3 copies)

Emergency plan??
GlusterFS:

It is a scalable open source clustered file system
It aggregates multiple storage bricks over Ethernet or Infiniband
RDMA interconnect into one large parallel network file system
offers a global namespace
Focus on scalability, elasticity, reliability, performance, ease of use
and manage, …
More scalable, reliable
No Metadata server with elastic HASH Algorithm
More flexible volume management (stackable features)
Elastic to add, replace or remove storage bricks
Automatic file replication, Snapshot, and Undelete

N ! Performance & capacity

Fuse-based client
Fully POSIX compliant
NO ACL (StoRM problem)

Emergency plan??
GlusterFS crash test:

Two cases
Storage server or network fails for one moment, then recovers
Disk is destroyed and all data in the disk is lost permanently

Different types of volume
(distributed, striped,
replicated volumes) and
running operations
(read, write) have
different affects in the
two cases
Running operations
mean that one is reading
or writing files when
storage server or
network fails

Emergency plan??
GlusterFS vs HDFS comparisons:

!!!my personal view!!! (from 0 to 10)

GlusterFS Hadoopfs

Resilient to failure 6 8

Posix compliance 8 4

Performance 9 6

Community 6 8

Scalability 6 8

Metadata performance 6 8

