

IBM Storage Solutions for High Performance Computing and Digital Media

Sandro De Santis (sandro1_desantis@it.ibm.com)

Agenda

- Current scenario and the IT laws
 - Disk Technology Directions
- Virtualization: why & where
- IBM Solutions in action:
 - Highly virtualized storage system: IBM XIV
 - Virtualized storage infrastructure with IBM SVC
 - Streamline your back-up & restore process with IBM TS7650
- Virtualization, Optimization, Consolidation, ...
- Storage as a Service (for the Cloud)
- HPC
 - introduction
 - HPC requirement
 - IBM GPFS
 - DS5000
 - DCS9900
 - Future
 - SONAS
 - DCS3700
- Summary

... the real mission

Drivers of Data Growth

- An interconnected world creates a growing demand for data
 - Points of data create/capture
 - Video Cameras, Cell phones, Sensors, Satellites, Scanners, ...
 - Points of access
 - Mobile, Laptop/desktop, Professional workstations, Home entertainment, ...
 - Large object creation with file access
 - Long term retention
- Key Use Cases
 - Medical imaging for active data and archive
 - Digital simulations in Pharma, Automotive, Aerospace
 - Rich content records in Insurance, Construction, Realty
 - Video capture for security, process management, education
 - Content distribution in Media & Entertainment
 - Web 2.0 and Social Networking
 - Financial Services Analytics

© 2011 IBM Corporation

Disk Technology Directions

Change in Disk Areal Density Trend

Historic trend

- From 1957 until today CAGR of Areal Density as averaged 30-35%/yr
- Between ~1990 and ~2004 it averaged 60-100%/yr

Current Decade

- Around 2004 the CAGR dropped to 25-35%/yr
- Disk vendors indicate that it will continue at 25-35% CAGR for the rest of the decade
- This will have a significant impact on the price and performance of disk drives through the end of the decade

Sources—Historic: IBM & Hitachi, Current: disk vendors through IBM procurement

Drive Access Times Are Improving Slowly

Performance / Capacity losing ground

Desktop and Server Drive Performance

IBM x INFN Workshop - Isola Elba - May 18, 2011

Typical System Time Scale

Flash Drives 101

- Advanced flash controllers enable performance, reliability and endurance
 —Reduce writes by ~1 order of magnitude (10⁵ → 2x10⁶)
- •Next generation controller technology will allow use of MLC Flash chips
 - -Eliminate writes by ~2 orders of magnitude, makes MLC technology affordable
 - -Native MLC: ~10K writes, (< 50 days of use in a server 7X24 @ 100% utilization)
 - -Increased integration will further increase density and lower cost

Storage System Evolution with Flash Technology

- . Step one start with NAND flash SSDs, emulate HDD and embed within disk arrays
- . Step two use as an extension of subsystem Cache
 - Keep Flash based SSDs as devices under the cache?
- . An additional model server integration

IBM x INFN Workshop - Isola Elba - May 18, 2011

Summary – Storage Device Directions

- HDD still the leader in \$/GB
- SSD already ahead in \$/G/Sec
 - Flash based technology will grow in use over next 3-5 years
 - Other technologies in development
- Prices of SSDs will advantage smart data placement technologies – Tools and Internal automation
- Tape will remain the \$/GB and GB/watt leader

- Return to historic disk drive price trends
 - Use storage more efficiently more intensive management
 - Compression / Deduplication
 - Hierarchical storage
 - Fosters the use of lower cost drives in the Enterprise
 - Fosters the development of redundancy technology

IT Laws

First and Second Law of IT (Thermo) dynamics

1. The potential complexity of an IT infrastructure is unbounded.

2. Without corrective action, the complexity of an IT infrastructure increases over time.

IT Laws (cont.)

Major Forces Are Driving IT Infrastructure Transformation

Operational issues have IT at a breaking point

Infrastructure

Costs & Service Delivery

- ⇒ Rising costs of operations
- ⇒ Explosion in volume of data and information
- ⇒ Difficulty in deploying new applications & services

Business Resilience & Security

- ⇒ Growing systems & applications availability needs
- ⇒ Security of your assets & your clients' information
- ⇒ Landslide of compliance requirements

Energy Requirements

- ⇒ Rising energy costs & rising energy demand
- ⇒ Power & thermal issues inhibit operations
- ⇒ Environmental compliance & governance mandates

Technology Advances

- \Rightarrow Service orientation
- ⇒ End-to-end service mgmt

The pace of technology

innovations is accelerating

- Comprehensive virtualization
- ⇒ Converged networks
- ⇒ Solid state storage
- ⇒ IT appliances
- ⇒ Storage de-duplication
- ⇒ Many cores & threads per chip
- ⇒ Low-cost high-BW fiber optics
- ⇒ Petaflop supercomputers
- ⇒ Cloud computing services
- ⇒ Real-time data streams

What is virtualization?

A logical representation of resources not constrained by physical limitations

Create many virtual resources within a single physical device

Reach beyond the box — see and manage many virtual resources as one

Dynamically change and adjust across the infrastructure

Virtualization creates an unprecedented freedom of choice

Virtualization is Everywhere

IBM Comprehensive Virtualization Offerings

Server virtualization

- IBM System p, System i, System z LPARs, VMware ESX
 - Virtually consolidate workloads on servers

File virtualization

- Scale Out File Services. IBM General Parallel File System
 - Virtually consolidate files in one namespace across servers

File system virtualization

- IBM System Storage N series Virtual File Manager
 - Virtually consolidate different file systems into one namespace

Disk and tape storage virtualization

- IBM System Storage SAN Volume Controller, TS7500, TS7600, TS7700
 - Virtually consolidate storage into pools

Storage Infrastructure Management

- IBM Tivoli Storage Productivity Center
 - Consolidated management of virtual/physical storage resources

IBM x INFN Workshop - Isola Elba - May 18, 2011

IBM Solutions in action: IBM XIV Storage System

IBM x INFN Workshop - Isola Elba - May 18, 2011

XIV Distribution Algorithm

- Each volume is spread across all drives
- Data is "cut" into "partitions" and stored on the disks
- Distribution algorithm <u>automatically</u> distributes partitions across <u>all</u> disks in the system pseudo-randomly

IBM x INFN Workshop - Isola Elba - May 18, 2011

XIV Distribution Algorithm

- Data distribution only changes when the system changes
 - Equilibrium is kept when new hardware is added
 - Equilibrium is kept when old hardware is removed
 - Equilibrium is kept after a hardware failure

XIV Distribution Algorithm

- Data distribution only changes when the system changes
 - Equilibrium is kept when new hardware is added
 - Equilibrium is kept when old hardware is removed
 - Equilibrium is kept after a hardware failure

XIV Distribution Algorithm

Data distribution only changes when the system changes
 Equilibrium is kept when now bardware is added

The fact that distribution is <u>full</u> and <u>automatic</u> makes sure all spindles join the effort of data re-distribution after configuration change.

Tremendous performance gains are seen in recovery/optimization times thanks to this fact.

IBM XIV Storage System Proven Benefits

- Lower capital costs, no added charge for XIV software features mirroring, snapshot, data migration, performance tuning, thin provisioning, …
- Savings in power, cooling, and space with large capacity drives
- Less storage and management needed, thanks to:
 - Automated distribution algorithm eliminate hot spots no performance management
 - Built-in thin provisioning use real capacity when needed
 - Space Management efficiency
 - Efficient and high performance snapshots
 - No storage tiering management ("de-tiering")
- Simple, intuitive management more capacity with less staff
- Consistent performance
- High availability:
 - Revolutionary grid-based self-healing

IBM Solutions in action: IBM SAN Volume Controller

Flexible & Dynamic Storage Infrastructure with IBM SAN Volume Controller

IBM Quicksilver Project

- Technology Demonstration: IBM SAN Volume Controller + Flash memory cards
 - Database workload (0% cache), running for 2 hours, delivered 1 Mio IOPS at 700µs response time (peak 1.1M) – August 2008
- SVC adds fine-grained "thin provisioning" to any storage

SVC Storage Infrastructure Virtualization : Compiled Benefits

- Flat interop. matrix 1.
- Single point administration 2.
- 3. No-cost multipathing SW

- 1.
- Cross-pool-striping: IOPS 2. 3.
 - Storage tier migration

- Performance increase 1.
- 2. Hot-spot elimination
- 3. L1...L2 cache

- License economies 1.
- Cross-vendor mirror 2.
 - Favorable TCO

IBM Solutions in action: IBM TS7650 ProtectTier Deduplication

Enterprise Class Data Deduplication: The HyperFactor

Deduplication provides significant data reduction Allows longer retention periods with minimal expense

Actual IBM TS7650 customer examples:

Customer	Physical Disk	Nominal Disk	Data Reduction	Retention Period
Wireless carrier	13 TB	190 TB	16:1	30 days
Oil company	100 TB	900 TB	44:1	6 weeks
Hospital	15 TB	100 TB	15:1	30 days

Consolidation and Virtualization IBM Services Landscape

^{© 2011} IBM Corporation

Platform Architecture Overview for Virtual Storage Clouds

- Cloud services
- New Cloud services are made possible, including Live VM Migration, Network Boot, et al.

Requirement Overview of Storage Cloud Services

Storage Cloud services dynamically ordered, deployed and managed in response to user demand
IBM

© 2011 IBM Corporation

The IBM Storage Solution/Platform Portfolio

Added value Features: Manageability

Network

Report on performance history.

SAN VC and V7000 External Virtualization Features

SAN VC and V7000 Host System Attach

SAN VC and V7000 Features: Scalability

Dynamically scale ...

capacit	<i>y</i>			
e //////	•	e ////// ******** e]	\checkmark	For high capacity applications such as
222		= = = = = =		archive, dynamically add capacity by
			~	or mix with additional performance

... features -

FlashCopy	Practice DR recovery	\checkmark	Many features are included
SAN Visualization	Automated failover / fail-back Thin Provisioning Performance optimization		Software is preinstalled in the system for
Performance management			
Metro Mirror			
Global Mirror	Virtualization	\checkmark	Premium features are already installed.

Protection

Standalone

Cluster

RAID 1

RAID 5

Hot swap

RAID 0

RAID 0+1

HPC intro

What is HPC?

- High performance computing (HPC) is a branch of computer science that concentrates on developing supercomputers and software to run on supercomputers. A main area of this discipline is developing parallel processing algorithms and software: programs that can be divided into little pieces so that each piece can be executed simultaneously by separate processors.
- High performance computing (HPC) refers to the use of supercomputers and computer clusters, that is, computing systems comprised of multiple processors linked together in a single system with commercially available interconnects.
- Because of their flexibility, power, and relatively low cost, HPC systems increasingly dominate the world of supercomputing.

Where HPC?

- HPC is most commonly associated with computing used for scientific research. A related term, High performance technical computing (HPTC), generally refers to the engineering applications of cluster-based computing (such as computational fluid dynamics and the building and testing of virtual prototypes).
- Recently, HPC has come to be applied to business uses of cluster-based supercomputers, such as data warehouses, line-of-business (LOB) application and transaction processing.

A Cluster Is Described As:

"A cluster is a collection of interconnected computers used as a unified computing resource"

(Gregory Pfister - In Search of Clusters)

- Clusters are comprised of standard components that could be used separately in other types of computing configurations
 - Compute nodes (servers/Blades)
 - Networking adapters and switches
 - Local and/or external storage
 - Systems management software

Aristotle

"...the true object of architecture is not bricks, mortar, or timber, but the house; and so the principal object of natural philosophy is not the material elements, but their composition, and the totality of the substance, independently of which they have no existence..." -- Aristotle

The whole is greater than the sum of the parts

HPC Clusters – Applications

HPC clusters typically run:

- Parallel applications with one to many tasks on one to many nodes computing in parallel and exchanging messages during their run time (e.g. big CFD simulation of a Formula 1 racing car).
- Lots of single jobs with different input data on lots of individual nodes (or their CPU cores) without communication during their run time (e.g. matching of gene or protein sequences vs. a common database).
- Mix of both (multiple/different parallel apps + single jobs).

© 2011 IBM Corporation

Very Basic Cluster Design

A Cluster that is designed like this is ready to perform a variety of compute functions.

HPC marketplace

High Performance Clusters need Networks

The right network technology is key to efficiency and ROI

The Role of the Network in HPC clusters

Infiniband/Myrinet

Gigabit Ethernet

Fibre Channel

Interconnect – Why is it important for a Cluster?

Application performance

- Compute time (CPU + Memory access)
- Communication (between processes)
- Data access

2 processes Data Acc Data Acc Data Acc	Computation Computation	Data trans Data trans	
1 process Data Acc			
2 processes	Computation	tion Data transfer Data transfer	Data transfer

HPC Storage

- HPC has large storage requirements
 - Often in Peta-Bytes of Data
 - Retrieving and saving data sets is problematic
 - Data integrity and coherency is a key concern
- NAS typically used for HPC storage
- High-performance parallel file systems increase I/O performance
 - iBrix, Panasas, GPFS, PVFS, Lustre, etc
- InfiniBand-attached storage provides high-bandwidth access to storage using native InfiniBand RDMA protocols
 - Ideal Performance characteristics for Highperformance Database clustering
- Key Products:
- IB attached storage and FibreChannel Gateway
- FibreChannel Switching
- Catalyst 6500, etc NAS

© 2011 IBM Corporation

GPFS and storage

GPFS File System

- Available continuously since 1998.
- Product available on pSeries and xSeries (IA32, IA64, Opteron), on AIX and Linux, and on Blue Gene.
- Also runs on compatible non-IBM servers and storage.
- Thousands of installs, including many Top 500 supercomputers
- Customers use GPFS in many applications
 - High-performance computing
 - Scalable file and Web servers
 - Database and digital libraries
 - Digital media
 - Analytics, financial data management, engineering design, ...

GPFS: parallel file access

- Parallel Cluster File System Based on Shared Disk (SAN) Model
- *Cluster* fabric-interconnected nodes (IP, SAN, ...)
- Shared disk all data and metadata on fabric-attached disk
- Parallel data and metadata flows from all of the nodes to all of the disks in parallel under control of distributed lock manager.

GPFS configuration examples

These are some of the basic possible configurations... there are many others!

GPFS performance features

- Striping
- Large blocks (with support of sub-blocks)
- Byte range locking (rather than file or extent locking)
- Access pattern optimizations
- File caching (i.e. pagepool) that optimize streaming access
- Prefetch, write behind
- Multi-therading
- Distributed/parallel overhead functions (e.g. metadata, tokens)
- Multi-pathing (i.e. multiple, independent paths to the same file data from anywhere in the cluster)

Network Storage Device Organzation

Storage Area Network organization

- FC fail over
- Dual RAID controllers

Due to the cost of SAN/FC networks, these solutions do not scale out very large.

Different models

Ethernet Switch (used for NSD/GPFS traffic for nodes 1, 2)						
		HPS	(used for NSD/GF	PFS traffic for node	es 3, 4)	
node 1	node 2	node 3	node 4	node 5	node 6	
App'n GPFS NSD Client	App'n GPFS NSD Client	App'n GPFS NSD client	App'n GPFS NSD client	App'n GPFS NSD client/server	App'n SD client/server	
os	os	os	os	OS Storage Node	OS Storage Node	
				SAN Swi	tch (FC)	
				44		

IBM disk solutions for HPC

- DS5000
- DCS9900
- future

IBM

DS5000

DS5000 Back-end Designed For Low Latency

- Short, quick drive loops reduce latency and create more responsive applications
- Sixteen switched back-end drive ports
- 256-drive configuration has only 32 drives per dual-loop
- 448-drive configuration has a max of 64 drives per dual-loop

EXP5060 Expansion Unit

- Support 1 TB and 2 TB 3.5" SATA II Drives
- 5 horizontal drawers with 12 drives each
 - Eliminates excessive front heavy weight in the rack
- All drives remain online when drawer is extended for service
 - Allows for single drive replacement without affecting all other drives in the enclosure
- 4U and fits in a standard 19" rack
- Supports two cabling options
 - Traditional
 - Trunking
- Can be intermixed with EXP5000 expansion units

The Evolution of SATA Drive Expansion Units Raw Capacity in 33U (32U for EXP5060)

EXP5060 – Cabling Options

Traditional

- Two loops per enclosure
- Used when intermixing with EXP5000 on loop pair

Trunking

- Four loops per enclosure
- Used to provide maximum throughput per enclosure

DS5x00 performances with GPFS 3.3

DS5300 with 16 x 8 Gbps FC host ports 16 GB cache, 240 SATA drives 24 arrays with RAID6

Parameter	Value
Read Cache	Enabled
Write Cache mirroring	Disabled
Write Cache without batterie	Disabled
Dynamic prefetch	Enabled
Volume segment Size	512kB
Controller Cache bloc size	32k
Start stop flush	80%

Table 1: Raid volume and controller parameters

GPFS Parameters	Value
maxblocksize	4194304
pagepool	4294967296
maxFilesToCache	10000
maxMBpS	3200
verbsRdma	enable
verbsPorts	mlx4_0/1
nsdbufspace	70
prefetchThreads	96
nsdThreadsPerDisk	4

Table 2: GPFS parameters for 4MB blocksize

GPFS Client Sequential read file creation (GB/s)	GPFS Client Sequential write file creation (GB/s)	GPFS Client Sequential read (GB/s)	GPFS client Sequential write (GB/s)
5.2	5.0	5.0	5.2

DCS9900

IBM System Storage DCS9900 Features

- Massive storage for highly scalable data streaming applications
- Designed to support managed Quality of Service to provide uninterrupted data delivery
- Hardware enabled RAID 6, which protects data in the event of double disk failure in the same redundancy group
- LUN mapping/LUN masking by host WWN
- Support for SATA and/or SAS Drives
- Dual controller with 5GB of RAID protected cache (2.5GB cache per controller)
- Eight FC8 or IB 4X DDR host ports (4 ports per controller)
- Twenty SAS 4-lane (3Gb/s) connections (10 per controller)
- 1024 LUNS, 512 concurrent logins (IB) and 1024 concurrent logins (FC) per DCS9900 couplet
- Full duplex host transfer operation, sustained performance up to 5.7 GB/s in both reads/writes
- No performance penalties in degraded mode operation, very fast rebuild rate
- Tier journaling with partial rebuild
- Block level virtualization, to virtualize storage deployment and system management
- SNMP, GUI, Telnet and API support

DCS9900 Features for High Performance

- Bandwidth or throughput requirements
- Low latency and QoS features
- FC8 or IB 4x DDR host interface
- Shared or parallel filesystems
- Large capacities
- SAS or SATA drives
- SAN or NAS environments

Key Technical Differentiators

Performance

- Up to 5.7 GB/sec bandwidth with large sequential I/O
- Writes as fast as reads
- No loss of performance during drive rebuilds

Density

➢ Up to 600 drives/600 TB per rack

Scalability

- Up to 2.4 PB per system in just two racks
- Scaling to multiple PB with multiple systems under parallel file system

Energy efficiency

Fewer controllers, power supplies and fans per TB Availability and reliability

- Hardware based RAID 6...8+2...with no performance penalty
- Parity computed on every read no SATA silent corruption errors
- All data remains visible to all clients even in the case of a disk, enclosure or controller failure – parallel architecture at every level
- Redundant power supplies and fans

Simplicity

- One array where others require many
- All managed from a single controller pair
- Storage can be managed from a single client on the SAN
- Fewer servers, switches, power supplies, fans and cables

Twice the performance and 25% more capacity than the DCS9550

Key Benefits

HPC
≻Less time lost waiting for checkpoints
>More capacity to capture results
>Faster computations

More oil reserves found, quicker
Better weather predictions, sooner
Better plane & auto designs, faster

Digital Media

 QoS: zero frame loss due to disk, enclosure or controller errors
 Real-time collaboration through access to shared data
 4 uncompressed 4K HD streams (1 GB/second each)
 640+ uncompressed HD streams (25-50 Mbps each)
 8000+ MPEG2 video streams (3.75 Mbps each)

> Quicker monetization of film assets> Better utilization of creative talent

All

 Less waiting - high performance read and write
 Management simplification through storage consolidation
 Cost savings through use of SATA drives

- Reduced management costs
- Energy savings
- Less data center build-out

DCS9900 RAID 6 Advantages

- Always 8 data drives (A-H), plus 2 dedicated Parity drive(s)
- Allows drives to reorder commands
- No performance impact in degraded modes
- RAIDed cache Both read and write operations
- Parity calculated on both read and write operations
- One stripe unit per disk channel (Byte striping)

DCS9900 Data Flow

•Serial Data Stream received from host into front-end interface (FC8 or IB 4x DDR)

•Serial data stream enters PCI Bridge where the serial stream is divided into eight 512 byte parallel streams

•Parallel stream enters Parity Engine where one or optionally two parities are calculated from the data synchronously

•Work orders from the central CPU received by Disk Controller Engines CPU's Queued command reordering in queued Cache.

•Simultaneous parallel data stream sent out the back-end disk interfaces

•Disks are arranged in a vertical stripe across back-end channels in a "tier"

DCS9900 Backend Parallelism

IBM x INFN Workshop - Isola Elba - May 18, 2011

Data Corruption Error Handling

Tiers of Disks, continued

A tier is a physical grouping of disks

Data is byte striped down the drives in the tier.

The byte stripe consists of 8 data drives formatted to 512 bytes/block each.

The total byte stripe is 4kb

TIER 1

TIER 2

TIER 3

1269-3S1 Storage Expansion Unit 60 Bay Drive Mapping

					Ix6	0 N	lode	9					IA /
DRIVE 49	DRIVE 50	DRIVE 51	DRIVE 52	DRIVE 53	DRIVE 54	DEM/1A	DRIVE 55	DRIVE 56	DRIVE 57	DRIVE 58	DRIVE 59	DRIVE 60	
DRIVE 37	DRIVE 38	DRIVE 39	DRIVE 40	DRIVE 41	DRIVE 42	DEM 18 DEM 3A	DRIVE 43	DRIVE 44	DRIVE 45	DRIVE 46	DRIVE 47	DRIVE 48	
DRIVE 25	DRIVE 26	DRIVE 27	DRIVE 28	DRIVE 29	DRIVE 30	DEM 2A DEM 48	DRIVE 31	DRIVE 32	DRIVE 33	DRIVE 34	DRIVE 35	DRIVE 36	
DRIVE 13	DRIVE 14	DRIVE 15	DRIVE 16	DRIVE 17	DRIVE 18	DEM 28 DEM 4A	DRIVE 19	DRIVE 20	DRIVE 21	DRIVE 22	DRIVE 23	DRIVE 24	
DRIVE 1	DRIVE 2	DRIVE 3	DRIVE 4	DRIVE 5	DRIVE 6	AUX DRIVE	DRIVE 7	DRIVE 8	DRIVE 9	DRIVE 10	DRIVE 11	DRIVE 12	

2x30 Mode

DRIVE 25	DRIVE 26	DRIVE 27	DRIVE 28	DRIVE 29	DRIVE 30	DEM TA	DRIVE 25	DRIVE 26	DRIVE 27	DRIVE 28	DRIVE 29	DRIVE 30
DRIVE 19	DRIVE 20	DRIVE 21	DRIVE 22	DRIVE 23	DRIVE 24	DEM3B DEM3D	DRIVE 19	DRIVE 20	DRIVE 21	DRIVE 22	DRIVE 23	DRIVE 24
DRIVE 13	DRIVE 14	DRIVE 15	DRIVE 16	DRIVE 17	DRIVE 18	DEM ZA DEM 48	DRIVE 13	DRIVE 14	DRIVE 15	DRIVE 16	DRIVE 17	DRIVE 18
DRIVE 7	DRIVE 8	DRIVE 9	DRIVE 10	DRIVE 11	DRIVE 12	DEM 2B DEM 4A	DRIVE 7	DRIVE 8	DRIVE 9	DRIVE 10	DRIVE 11	DRIVE 12
DRIVE 1	DRIVE 2	DRIVE 3	DRIVE 4	DRIVE 5	DRIVE 6	AUX DRIVE	DRIVE 1	DRIVE 2	DRIVE 3	DRIVE 4	DRIVE 5	DRIVE 6

1269-3S1 Storage Expansion Unit SAS Expanders

Enabling Technology – Sleep Mode

Up to 85% of data is dormant and infrequently accessed

For many customers, it is desirable to keep this data readily accessible while finding more economical ways to store it

Sleep Mode reduces power and cooling costs by idling designated drive tiers

- Drive controllers remain active to reduce delays on awakening
- System allows specific drives to be idled keeping important data readily accessible
- Industry-leading spin-up time
- No impact on performance when not in sleep mode

Sleep Mode supports IBM's Big Green Initiative

A single 960TB DCS9550 system can realize savings up to \$28,740 per year in power and associated cooling costs in expensive metro areas

Configuration	Fully Active	80% Sleep	Power Savings	Annual Cost Savings @ \$0.20/KWHr *		
240TB (240 x 1TB SATA)	4.89 kW	2.84 kW	2.05 kW	\$7.185		
480TB (480 x 1TB SATA)	9.29 kW	5.19 kW	4.10 kW	\$14,370		
960TB (960 x 1TB SATA)	18.1 kW	9.88 kW	8.20 kW	\$28,740		

* Includes savings from power required for cooling, estimated to be equal to savings from direct power.

DCS9900 Configurations

Three 60-Slot Enclosures 150 Drives Up to: 300 TB raw w/2TB Drives 229 TB usable* 8 FC8 or IB 4x DDR ports 1 @ 42U or 45U Rack

Five 60-Slot Enclosures 150 - 300 Drives Up to: 600TB raw w/2TB Drives 458 TB usable* 8 FC8 or IB 4x DDR ports 1 @ 42U or 45U Rack

Ten 60-Slot Enclosures 150 - 600 Drives Up to: 1.2 PB raw w/2TB Drives 896 TB usable* 8 FC8 or IB 4x DDR ports 1 @45U Rack

Twenty 60-Slot Enclosures 150 - 1200 Disks Up to: 2.4 PB raw w/2TB Drives 1.832 PB usable* 8 FC8 or IB 4x DDR ports 2 @ 45U Rack

 \leftarrow === SAS or SATA or SAS/SATA Intermix == \rightarrow

Disk Controller DCS9xx0 logical configuration

COMMENTS:

- Requires TbE or other high speed LAN
- This configuration completely satisfies all 4 design criteria.
- Topologically equivalent configurations can be achieved using different cabling and zoning schema.

COMMENTS:

- C1 "owns" LUNs 1,3,5,7,9,11,13,15,17,19,21,23
- C2 "owns" LUNs 2,4,6,8,10,12,14,16,18,20,22,24
- Requries cache coherence to be enabled

this is a DCS9550 parameter

 Controllers and drivers support "active:active" protocol

Future (and now)

New solutions

- SONAS
- Next DCS xxxx
- DS8800

SONAS Architecture

Solves the storage problem 3 basic components

✓ Interface Nodes = how fast
✓ Storage Pods = how big
✓ Management Node

All nodes are clustered for availability •Users connected through 1GbE or 10GbE •All nodes are connected through private Infiniband network

Parallel Grid Architecture

Massive linear scalabilityHigh performanceHigh availability & redundancy

SONAS Software runs on all nodes

Policy automationGlobal file systemGUI and operating system

SONAS Performance Learning Points: Parallelism, Scale

- SONAS performance is a clustered, scale-out approach
- Single stream performance from SONAS to a single client is pretty good, but that by itself isn't hugely different than an unconstrained traditional NAS filer with a single stream
- The performance problem with traditional filers is that:
 - as you start to add users the traditional system degrades at some point
 - -but at that point, the SONAS continues to run with linear scale
 - and SONAS will continue to scale just by adding nodes or storage
- The real power of SONAS performance is <u>parallelism</u> and <u>massive scale</u>: multiple concurrent users, multiple concurrent streams, across different attaching platforms, with massive scalability, including multiple writers to the same file

IBM N Series and IBM Scale Out NAS Positioning

N series is a very important component of the IBM Portfolio SONAS is positioned for specific opportunities

		NAS		
Enter Cla 300 or T	r prise Iss 7 more B	 SONAS Supports requirements for very high performance and petabyte-scale capacity demands. Integrated ILM All-inclusive software licensing. 	}	1/3* of NAS Market Opportunity
Midra 100 to T Ent Up to 1	ange o 300 B ary 00 TB	 NAS storage (or multiprotocol) Compliance NENR Storage requirements Scattered Remote Office / Branch Office Heterogeneous gateway. Simple two-site high availability. Replication. Application affinity (Snap Manager). 		2/3* of NAS Market Opportunity

. - - - - -

New "HPC" Disk Systems

DCS3700 for the HPC Market

planned to be announced in May

- Dual-active intelligent array controllers enabled with Turbo Performance
- 4 GB mirrored Cache (upgradeable to 8 GB)
- 4x 6 Gb SAS host ports standard with optional 8x 8 Gb FC host ports
- Sixty SAS drive bays, with support for up to 180 drives with the attachment of two DCS3700 Expansion Units
- Data replication options with FlashCopy, Volume Copy, and Remote Mirroring over Fibre Channel
- IBM DS Storage Manager for administrative and management activities
- 128 Partitions

DCS3700 Expansion

- Dual-active environmental services modules (ESMs)
- Sixty SAS drive bays
- 6 Gb SAS attachment to the DCS3700 Storage System or to another DCS3700 Expansion Unit

Both models feature:

- Slim 4U, 19-inch rack mount enclosure
- Dual port, hot-swappable 2 TB SAS nearline disk drives
- Redundant, hot-swappable hardware components
- IBM installation and a one year warranty with 24 x 7 on-site repair, 6 hour response

HPC-Entry Disk Systems

DCS3700 for the HPC Market

<u>Outlook</u>

It is IBM's current plan and intent to offer

- additional drive options

for the DCS3700 in second half 2011,

including high-performance disk drives and solid state drives.

IBM and Business Partner Internal Use Only

HPC-Storage installations in Italy

- Cineca Bologna
 6 x DCS9900 x 1,5 PB
- CMCC Euromed Lecce
 2 x DCS9900 x 240 TB
 1 x DS4800 x 20 TB
- Enea Cresco Napoli
 1 x DCS9550 x 120 TB
- Banca Intesa Parma
 2 x DS5300 x 10 TB
- Cineca x ENI Bologna
 - -3 x DCS9900 x 1 PB
 - 3 x DDN SFA10000 x 3 PB (on going)
 - 2 x DS5100 (metadata) (on going)

Questions ?

IBM x INFN Workshop - Isola Elba - May 18, 2011

That's all folks !

© 2011 IBM Corporation