LHCb data managment

Angelo Carbone INFN-Bologna

Workshop CCR INFN GRID 2011 19 Maggio 2011

Outline

- Introduction
 - Computing model at a glance
 - LHCb data flow
- LHCb Data Management with Dirac
- Experience of data management with real data
 - Change of computing model
- Data analysis management

2

Introduction

LHCb Data Characteristics

- Data size and rates are modest compared to other LHC experiments
 - 35 kB RAW event size
 - Trigger rate: 2000-3000 events/s
 - 25 kB RDST (a.k.a. ESD), 85 kB DST (a.k.a. AOD)
 - Typical reconstruction time: 12 HSo6.s/event
- Physics research channels are rare
 - b-quark CP violation decay modes (BR ~ 10⁻⁹ to 10⁻⁶)
 - Typically a few 10'000s to a million events per year (2 fb⁻¹)
 - A needle in a haystack
 - Easier to extract b decay events if only one primary vertex
 - Metrics = average number of visible interactions per beam crossing (μ)
 - For LHC design characteristics μ=0.4 at LHCb

Guidelines for the Computing Model

- Small processing time, but high trigger rate
 - 24 kHSo6 required for reconstruction
 - Typically 2000 CPU slots
 - Tier-o could not provide the necessary CPU power
 - Use Tier1s as well for reconstruction (first pass)
- Most problems for analysis jobs are related to Data Management
 - SE accessibility, scalability, reliability...
 - Restrict the number of sites with data access
 - Use Tier1s for analysis
- High requirements on simulated data
 - Background identification, efficiency estimation for signal
 - Typically 360 HSo6.s per event
 - Use all possible non-Tier1 resources for simulation

LHCb Computing Model

6

Computing activities

- Production activities
 - Simulation, reconstruction, stripping, WG analysis (μDST)
 - Use DIRAC and the LHCb Production System
- User analysis
 - Data and MC analysis
 - For testing, use local resources (including local batch system)
 - For large datasets, use Grid Computing
- Toy MC and fits
 - Use Grid Computing for large samples
- Non-Grid user analysis
 - Mostly interactive analysis on local clusters (Tier-3), desk/lap-top (Tier-4)

Data flow

- As soon as the raw data are recorded by the detector they are sent to Tier-1's+CERN-CAF to be reconstructed
- After the reconstruction, the Stripping process is performed
 - pre-selections provided by analysis working groups are applied in order to
 - write on disk different streams where each contains similar selected events, such as B-hadron, Vo decays, charm decays, etc...
 - reduce the data sample to a handy size in order to perform a finely tuned analysis
- The stripping can be performed several times on the same datasets (according to the availability of resources) if pre-selection algorithms change.

Data management: DIRAC

DIRAC: Community Grid Solution

The DIRAC project is a complete Grid solution.

Designed to be used by a community of users.

Services and agents of DIRAC overlay resources.

Transparent use of different grids e.g. gLite, NorduGrid etc.

Integration of non-grid resources e.g. local, clouds, batch systems etc.

Grid compliant security framework (OpenSSL with X509 certificates).

LHCb to Grid

- RAW physics data from LHCb written to Online storage
 - 100 MB/s online data acquisition rate (3KHz)
- Replicate RAW data to Castor at CERN
 - Dedicated 1Gb link per host
- Remove data Online when 'safe'
 - Correctly migrated to tape

• Checksum compared against Online file

LHCb to Grid

- DIRAC install at Gateway
 - Replicate RAW data to Castor pools
 - Register data to Online Integrity DB

Persist files Online till 'safe'

- File checksum calculated online at write time
- File checksum calculated by Castor on migration to tape
- Online Integrity Agent interrogates Castor for file checksum
- If 'safe': place removal request in DIRAC RequestDB at Gateway
- Pass removal request to Online system

Bulk Data Replication

- Transfer requests centrally managed
 - Maintained in TransferDB
 - Create bulk transfers by aggregating requests

Transfer Agent polls TransferDB

- Obtains bulk transfer requests
- Submits and monitors transfers through FTS CLI
- Requests retried till success

Data Driven RAW Replication

- Dataflow for RAW files
 - Master copy at CERN
 - Replicated at Tier1 site
 - 40 MB/s aggregated out of CERN
 - Reconstruction based on pledged resources
 - Tier1s and CERN
- Data driven replication using AutoDataTransferDB as hook

Replication Agent splits files according to site share defined in configuration

- Places transfer requests into TransferDB
- Handled together with other types of transfer request

Data Driven RAW Replication

- AutoDataTransferDB (AdtDB) contains simple file catalogue
 - Exposes standard DIRAC file catalogue API
 - Each DM operation specifications contained in DB
 - Source and target SEs
 - File selection (based on LFN namespace)
 - Threshold number of files
- Replication Agent uses AdtDB API
 - Checks for files to be processed
 - Applies selection for desired files
 - Checks file location
 - Files selected if matching operation specification
 - Request created when threshold number of files found
- Replication Agent logic generalized to support multiple operation types
 - Single source to many destinations
 - Splitting files based on configurable share

Data Driven Reconstruction/Stripping

- Similar components exist in the Workload Management System for job creation and submission
 - ProcessingDB
 - Analogous to AdtDB
 - Transformation Agent
 - Analogous to Replication Agent
- Files registered in ProcessingDB may be selected for processing
 - Transformations define specific processing activities
 - Reconstruction/stripping/re-processing
 - Based on file properties
- Transformation Agent groups files for processing
 - Subsequently submits jobs
- Registration of RAW data in AdtDB initializes the chain of replication and data processing

Data Driven RAW Replication

Surpass computing Model requirements (40MB/s)

Optimized DST Replication

- Processing activities produce user analysis files (DST)
 - DSTs from real data must (should) be replicated to all (4) Tier1s
 - Average ~11MB/s in and out
 - Shared 10Gb network available using FTS
- DSTs from MC data present on a selection of Tier1s

 Define output SEs in AdtDB per production

Job uploads output to SE associated Tier1

- File registered to AdtDB
- Replication Agent determines output SEs
 - Defined in configuration per production
 - Places replication request to TransferDB

DST 2011 data distribution: CERN -> Tier1s

Generated on 2011-05-19 05:51:10 UTC

Data Management: Real data

LHCb real data 2010-2011

- LHC started with very low luminosity
 - Very few colliding bunches
 - Not worth for rare b-physics decays
 - Minimum bias trigger for 2 months (early 2010)
 - Introduce tighter triggers when luminosity increases
- LHC change of strategy for higher luminosity
 - Large number of protons per bunch
 - Small squeezing
 - Consequence: larger number of collisions per crossing
 - µ=1 to 2.3 !!!
 - Much higher pile-up (1.6 to 2.3 collisions per trigger)
- Effects on Computing
 - Larger events
 - More complex events to reconstruct
 - Larger pre-selection retention

Recent change on Computing Model (I)

• Increase in μ from 0.4 to implies changes to basic parameters of the model:

Process	CPU (HS06·s/evt)		Data Type	Storage (kB/evt)	
	New	Old		New	Old
Data Taking			RAW	50	30
Reconstruction	25	12	SDST	40	25
Stripping	1.75	0.8	DST	130	80
			MDST	13	
Simulation	1700	376	DST	400	300

Reconstruction CPU time

LHCb decide to fix the working condition to $\mu=1.5$

Different triggers

Recent change on Computing Model (II)

- To accommodate larger events, reduce number of replicas:
 - 4 disk only (ToD1) (secondary) replicas (one at CERN)
 - (was 2 T1D1 (master) plus 5 ToD1 (secondary))
- Archival copy (tape only, T1Do):
 - 2 copies (one at CERN)
 - Plus second CERN copy for RAW (three copies in total for RAW)
 - master copy written directly to archival storage
 - In previous model T1D1 masters migrated to T1D0 at archival time
 - Protection in data management tools to prevent deletion of archive copies
- Previous model prone to errors:
 - Last disk copy could be deleted before archival
 - Confusion between archive copy (never deleted) and T1D1 master copies (can be deleted after archival)

Recent change on Computing Model (III)

- More aggressive reduction of old data from disk:
 - Keep latest (N) processing and previous (N-1) processing
 - Halve number of disk copies of (N-2) processing
 - This is done BEFORE starting processing "N"
 - Completely remove (N-3) processing
 - Before starting processing N
 - Exceptions only at expense of delaying reprocessing

Recent change on Computing Model (IV)

- Baseline: b-physics:
 - 2 kHz of Trigger
 - 10% retention in Stripping
 - RAW: 500 TB/year
 - SDTS: 400 TB/pass
 - DST: 130 TB/pass
- In addition: c-physics
 - 1 kHz of Trigger
 - 10% reduction in size after Stripping
 - RAW: 250 TB/year
 - MDST: 65 TB/pass
- Monte Carlo dedicated to b/c samples
 - DST: 300 TB/year

Data collection

Raw data distribution 2010

LHCb 2010 RAW data							
SE	Size (TB)	# of Files					
CERN-RAW (T1D0)	97.4	87233					
CERN-RDST (T1D1)	83.4	76711					
CERN	180.8	163944					
CNAF-RAW (T1D0)	19.5	17847					
GRIDKA-RAW (T1D0)	27.5	25141					
IN2P3-RAW (T1D0)	34.4	31666					
NIKHEF-RAW (T1D0)	33.8	31024					
PIC-RAW (T1D0)	9.1	8520					
RAL-RAW (T1D0)	30.6	27978					
Tier1s	154.9	142176					

Only physics data (155 TB in total) is replicated to Tier1s.

RAW data share according to CPU pledges of Tier1s

Disk usage (January 2011)

•						
Disk Summary		Seen by SLS TB			Seen by LHCb	
(08/02/2011)	Pledge (TB)				ТВ	
		Total	Used	Avail.	Used	Pledge-Used
FZK	495	500	330.2	169.8	336.3	158.7
IN2P3	610	638.5	298.7	338	284.4	325.6
CNAF	450	462.7	386	74.7	384.1	65.9
NL-T1	560	563	350.4	209.6	244.9	315.1
PIC	240	255	149.5	100.5	149.2	90.8
RAL	505	1174.9	453.5	183.9	443.9	505
Tier1s	2860	3594.1	2359.7	1224.5	1840.2	1019.8
CERN	1135	1175.6	861.2	314.4	736.8	398.2

NB: Good agreement between what is really on disk (386TB) and what LHCb seen (384.1) \rightarrow big discrepancy observed on other sites due to lowest reliability of others storage system (CERN and RAL with castor but also NIKHEF with dcahce)

Data analysis managment

User job: input data

16 PiB analyzed since September 2010.

Peak of 3-4 GiB/s achieved in September 2010 considering all the lhcb user jobs

User quota

- User grid storage is part of total Tier1 disk storage allocation
 - Competes with space for production data
 - Should be kept under control
- Up to now, no quotas
 - 41 users > 2TB
 - 17 users > 5TB
 - 6 users > 10TB
 - 1 user > 60TB (more than Reco DST!)
- "Enforce" quota of 2TB / user
 - (2 replicas of 1TB each)
 - Currently just mail warnings, but eventually block job submission if more than 50% overquota
 - Experience is that users are cooperative
 - Special arrangements if good reason for large quota need
 - e.g. datasets for group analysis, should be justified by convener with timescale for extended quota

Conclusions

- LHCb Data Management is well integrated within DIRAC project
 - all the tools provided by DIRAC worked well so far and satisfied the Collaboration needs
 - starting now the discussion about dynamic transfer of data based on popularity measurements
- The experience on real data shows the necessity to update the computing model
 - LHC reached the LHCb designed instantaneous luminosity with a number of visible interactions per beam crossing higher than what is expected
 - LHCb design μ =0.4, today μ ~1.5
 - Main points:
 - reduced the DST replicas (from all Tier1s to 4 Tier1s)
 - More aggressive reduction of old data from disk
 - Increase of resources needs (in particular disk)