

LHCONE: il punto di vista di ATLAS/CMS

Daniele Bonacorsi

[deputy CMS Computing coordinator - University of Bologna, Italy]

DISCLAIMER:

Most discussions/activities in this context involve only ATLAS/CMS - so far

WLCG Tiers

Computing Model(s)

Operations (focus on data transfer and access)

Motivations for LHCONE

LHCONE and ATLAS/CMS view

Work in progress

WLCG today for LHC experiments

Site reliability in WLCG

Basic monitoring of WLCG services

◆ at Tier-0/1/2 levels

Sites reliability is a key ingredient in the success of LHC Computing

- We have reliable T2s as we have reliable T1s
- ◆ A variegate community, but it's meaningful to rely on computing activities at T2s, more and more

Readiness of WLCG Tiers

Site Availability Monitoring

Critical tests, per Tier, per experiment

Some experiments built their own readiness criteria on top of basic ones

- e.g. CMS defines a "site readiness" based on a boolean 'AND' of many tests
 - Easy to be OK on some
 - Hard to be OK on all, and in a stable manner...

WLCG Tiers

Computing Model(s)

Operations (focus on data transfer and access)

Motivations for LHCONE
LHCONE and ATLAS/CMS view
Work in progress

LHC Computing models

LHC Computing models are based on the MONARC model

◆ Tiered computing facilities to meet the needs of the LHC experiments

MONARC was developed more than a decade ago

◆ It served the community remarkably well, evolutions in progress

From commissioning to data taking

"Data Challenges":

experiment-specific, independent tests (first full chain of computing models on grids)

"Service Challenges":

since 2004, to demonstrate service aspects:

- DM and sustained data transfers
- WM and scaling of job workloads
- Support processes
- Interoperability
- Security incidents ("fire drills")

Run the service(s):

Focus on real and continuous production use of the services over several years:

- simulations (since 2003)
- cosmics data taking, ...

"Readiness/Scale Challenges":

Data/Service Challenges to exercise aspects of the overall service at the same time - if possible with VO overlap

2004

DC04 (ALICE, CMS, LHCb) DC2 (ATLAS)

SC1 (network transfer tests) 2005

SC2 (network transfer tests)

2006

SC3 (sustained transfer rates, DM, service reliability)

> More experiment-specific challenges...

2007

SC4 (nominal LHC rates, disk→tape tests. all T1, some T2s)

> More experiment-specific challenges...

2008

CCRC08 (phase I - II)

(readiness challenge, all exps. ~full computing models)

2009

STEP'09

(scale challenges, all exps + multi-VO overlap, **FULL** computing models)

pp+HI data taking 2010

pp+HI data taking

Daniele Bonacorsi [CMS]

WLCG Tiers Computing Model(s)

Operations (focus on data transfer and access)

Motivations for LHCONE
LHCONE and ATLAS/CMS view
Work in progress

LHC data taking 2010

Remarkable ramp-up in lumi in 2010

- ◆ At the beginning, a "good" weekend could double or triple the dataset
- a significant failure or outage for a fill would be a big fraction of the total data

Original planning for Computing in 2010 foresaw higher data volumes

◆ Time in stable beams per week reached 40% only few times

Load on computing systems lower than expected, no stress on resources

 Slower ramp has allowed predicted activities to be performed more frequently

LHC data taking 2011

Going extremely well

- → ~250-300 pb⁻¹ so far
- → ~1.7 E11 protons/bunch
- ◆ Expect ~1400 bunches in June

2011: consistent load on resources

♦ we will be resource constrained

CERN→T1 data transfers

CERN outbound traffic showed high performance and reliability

- Very well serving the needs of LHC experiments
- Under control

LHCOPN network in operations

OPN links now fully redundant

- → Means no service interruptions
 - See the fiber cut during STEP'09

WLCG Tiers Computing Model(s)

Operations (focus on data transfer and access)

Motivations for LHCONE

LHCONE and ATLAS/CMS view Work in progress

An example: ATLAS data transfers

Transfers on all routes (among all Tier levels)

- ♦ Average: ~2.3 GB/s (daily average)
- Peak: ~7 GB/s (daily average)

Data available on-site after few hrs.

Traffic on OPN measured up to 70 Gbps

ATLAS massive reprocessing campaigns

An example: CMS data transfers

Massive commissioning, now in continuous production-mode of ops

◆ Can sustain up to >200 TB/day of production transfers on the overall topology

Data placement for analysis: an example

Data population and access by analysis applications at T2 level by CMS

- ◆ Largest fraction of analysis computing at LHC is at the T2 level
- ◆ Flexibility of the transfer model help to reduce the latency seen by the analysis end-users

This triggered the interest of DANTE

→ in ISGC'10 in Taipei and in EGI-UF 2011 in Vilnius

2010 Tx-Ty traffic breakdown in CMS

Production data volume transferred on different routes per month in 2010

T2-T2 commissioning

Up to 30 links commissioned per day in CMS in 2010, average is ~7 links/day over the first 6 months of data taking

ATLAS is doing something similar to CMS now, in testing and starting to use "extra-cloud" links among T2s

WLCG Tiers

Computing Model(s)

Operations (focus on data transfer and access)

Motivations for LHCONE

LHCONE and ATLAS/CMS view

Work in progress

LHCONE for LHC experiments

LHCONE is described elsewhere

◆ See <u>lhcone.net</u>

Food for thoughts from some LHCONE discussions:

- ◆ It addresses a problem we (experiments) do not have yet
 - Avoid things from decaying
- ◆ A lot is going on, at different levels (also: not technical)
 - Build the cheapest infrastructure that satisfies the requirements, do not let anyone out
- ◆ Allow e-Sciences to grow and operate
 - Avoid congestioning GPNs with "not-MONARC" LHC traffic
- Opportunistic approach, so far
 - "collect the low-hanging fruits first" vs "open env: should not increase the digital divide"
 - Reach a critical mass that pushes the entire process
- ◆ It's a work in progress
 - Both in the network communities and in the experiments communities

ATLAS-specific view

Private communication with S. Jezequel and I Ueda, followed by: [*] meeting with D.Foster, A.Barczyk, I.Fisk, D.Bonacorsi

ATLAS experienced several "issues" with the network, e.g.:

- more and more often saturating, accidents, low-performance events
 - e.g. CNAF-BNL recently
- quite unpredictable. And seeing an event does not necessarily justify actions.
 - What actually is a problem and should trigger actions needs to be clarified

Expectation from LHCONE:

- Get a list of (ATLAS) sites which will be connected to LHCONE before July (hopefully with a timescale)
 - This was somehow understood at a meeting [*] that the proactive sites will eventually rule the game, and if experiments want some site to go first they should speak up
- ◆ Ensure that network team will validate the new path before ATLAS starts transfer tests

Impact on ATLAS

- Check that the transfer rate for single files between these LHCONE sites and some selected
 T1s is identical or better than before
 - based on ATLAS sonar test
- ◆ Define some stress transfer tests (before and after the migration) between these LHCONE sites and some selected T1s to measure any possible improvement in transfer rate
 - maybe need to create some activity on the public network

If LHCONE has any request or better view of interesting tests, this can be discussed.

CMS-specific view

My input, also discussed at:
[*] meeting with S. Jezequel, I Ueda, D.Foster, A.Barczyk, I.Fisk

CMS data on transfers in most routes exist.

But are historically and contextually diverse in richness

- ◆ CMS did T2-T2 commissioning and measurements
 - e.g. we have a-la heartbeat (commissioning the links) plus 24-hrs best periods, for most links
 - But we cannot reliably predict how a given is link is working if used tomorrow
- Some links have never been run at high level
 - a little hard for >2.5k links to say if this is because they were not tested, or because a request/subscription was never made.

Important for CMS:

- We need to test BEFORE and AFTER any change
 - The BEFORE gives you the benchmark, the AFTER gives the feedback to exps and Networks
- ◆ To know when site-X will be connected with some advance
 - Quantified [*] in <u>at least 1 week</u>. This point needs to be reinforced, and sites informed.
- CMS does not expect a major improvements in the network
 - We expect to verify it does not get worse, and it gets eventually more predictable
- ◆ Get guidance by network experts about the change at site-X
 - OK on Ihcone.net: what changes were done, when, how we can monitor now
- ◆ Get prompt feedback in case experiments notify post-change issues
 - We will inform network experts through communication channels we will be suggested to use

WLCG Tiers
Computing Model(s)

Operations (focus on data transfer and access)

Motivations for LHCONE
LHCONE and ATLAS/CMS view

Work in progress

What's going on?

So far, smooth convergence in ATLAS and CMS on the needs and general ideas on how to get prepared.

ATLAS: a meeting on the subject at the end of May.

CMS: decided to adopt a strategy consisting of two complementary approaches

- Use PhEDEx /Debug and the LoadTest (LT) infrastructure with Debugging Data Transfers (DDT) procedures
 - LoadTest infrastructure is reliable, fully PhEDEx-integrated, versatile
 - a PhEDEx /Debug instance is available to play with (CMS did it for T2-T2 commissioning)

 Need to reduce the # links (only the ones in the Bos-Fisk document, not the whole 2.5k matrix!)
- 2 Use the work-in-progress on FTS/FTM parsing
 - Gives complementary, customizable, detailed info for each link (rate per stream, throughput)
 - Once you collect data, the problem is addressed once and scales for N links

NOTE: part 2 of the CMS approach is not CMS-specific, and can be adopted by other experiments (if they use FTS/FTM).

1nd approach:

Use PhEDEx and LT based on DDT procedures

PhEDEx LoadTest (LT)

- ◆ A flexible infrastructure to generate "test" data transfer load among sites
 - "fake" but "real": test files fully integrated in PhEDEx
- ◆ Flexible and customizable (e.g. you choose source site, destination site, rate)
- → ~24/7 activity since early-2007

Debugging Data Transfers (DDT)

- ◆ A program to maintain a high-quality transfer network via commissioning links
- ◆ Metric, monitor, troubleshooting, site involvement, doc of success stories
- a Task Force in charge since mid-2007

The idea for LHCONE tests is:

- ◆ exploit the LT infrastructure to test links among the list of first-comers
 - as from the Bos/Fisk document
- → fully change the DDT procedure for this purpose
 - transition it from a "commissioning" scope to a "performance monitoring" scope

Work is mainly <u>manual</u>. Started already.

2nd approach:

An accounting tool for FTS transfers

The tool is meant to provide an accounting of FTS transfers at the individual file level, which is:

- historical: keeping statistics over a long time period;
- global: attempt to get data from all FTS servers used by CMS;
- ◆ <u>low level</u>: collect data as rates, rates/stream, queue time, SRM overheads, etc;

Experiments do not have such tool. E.g. in CMS we have:

- ◆ PhEDEx: global and historical but "high level";
- ◆ FTS Monitors: "low level" but local to each FTS and no history

This is useful for a number of tasks

- ◆ Optimizing of FTS channels settings & identif of congested channels
- Creating of "cloud" FTS channels to improve channel occupancy
- ◆ Spotting general problems with endpoints and/or links
- Checking network performances, e.g. feedback on LHC{OPN,ONE}

Also triggered by LHCONE needs, CMS developed and deployed one

♦ It's not VO-specific. It will eventually converge in a Dashboard object

Work is mainly <u>automatic</u>. Started already.

Discussion points

Points for discussions (now, and at the BOF):

- ◆ Experiments ← Networks communication on LHCONE topics
 - Do Networks/Experiments know what Experiments/Networks are doing planning to do?
 - Are we OK, or more cross-fertilization should be encouraged and enforced?
- ◆ Do we need to re-activate some work to describe network utilization in next years by experiments?
 - If so, in which form? Will the Networks community be actors or customers of such work?
- → How do we set priorities in picking up sites and plug them in LHCONE?
 - Prio on best performing sites (heavy/useful load on the system and want to protect it)...
 - ... or prio on those that performs poorly (the biggest potential gain some have plenty of resources)
- ◆ Any feedback by network experts on the way experiments plan to do tests?

Back-up

LHC accelerator schedule

More examples: ALICE and LHCb data transfers

LHCb data is successfully transferred on a regular basis

◆ RAW data is replicated to one of the T1 sites

CATANIA::DPM | CATANIA::SE | CCIN2P3::SE | CCIN2P3::TAPE | CERN::ALICEDISK | CERN::CASTOR2 | CERN::SE | CERN::TOALICE | CLERMONT::SE | CNAF::SE | CRN::TAPE | FZK::SE | FZK::TAPE | GLOBAL | GRENOBLE::DPM | JINR::SE | LBL::SE | LEGNARO::SE | NDGF::DCACHE | NDGF::DCACHE_TAPE | RAL::CASTOR2 | RAL::TAPE | SARA::DCACHE | SARA::DCACHE_TAPE | SUBATECH::SE | TORINO::SE | WUHAN::SE

Analysis in ALICE

On average, 1.7k concurrent user jobs in 2010

 >9M user jobs completed over last 12 months

~200 distinct users on average, and increasing

Interesting analysis train model

User code is picked up and executed with other analyses

Analysis Trains:

- Optimized I/O (read once, do many tasks)
- ◆ Streamlined code (as much as possible)
- ◆ Managed, scheduled (like MC sim or reco.)

User jobs:

- ◆ Low CPU efficiency (wrt MC sim or reco)
- Variable job duration, many failures, far-from-perfect code
- ◆ Unmanaged, chaotic

Analysis in ATLAS

Increase in analysis load after the start of 2010 data taking

- ◆ After that, roughly stable load
 - Holidays holes, as well as activities peaks before major conferences, are visible

Analysis share per "cloud"

(only for pAthena-Panda system; ganga-WMS not counted)

Analysis in CMS

Feb'11

Constant increase in # users

- → ~300-350 distinct daily users
- ◆ Up to >500 users per week during peaks
- → >800 individuals per month

Analysis at the T2 level.

Apr'10

Analysis in LHCb

Successful user jobs at T1s

No a-priori assignment of site

Share by availability of resources and data

Only ~2% of analysis at T2s

◆ Toy MC, private small simulations, etc

~320 unique analysis users

Roughly, ~50% of LHCb analysis is performed out of CERN

