
Prestazioni di accesso allo storage:
confronto di diverse soluzioni hw/sw,

bottleneck di rete e di applicazioni

DONVITO Giacinto (See next slide)
Università e INFN -- BARI

Contribution:

This is a report of several activities
carried on by several people
Main contribution from:

Manoj Kumar Jha (Atlas)
Brian Bockelman (CMS)

Outlook
Top -> Down

Starting from applications:
Atlas
CMS

Software
Storage management software

Hardware:
Disk subsystem:
Network infrastructure

Failures:
inefficiencies due to failure of the systems

Working on applications

Using TTreeCache when reading the files reduces read time by
ordering and predicting read requests but introduces one more
memory buffer.

Two more optimization options are to reorder the baskets which
can be made according to event (entry) number or according to
branch. All ATLAS files produced at Tier0 are re-ordered by
event.

Finally starting with Athena 15.9.0, which uses ROOT 5.26.00.d,
we have a possibility to use the ROOT autoFlush functionality.

the first time that a preset amount of data has been collected
(by default 30 MB) the sizes of baskets are optimized and
their content is written to file. The next flush to file happens
when the same number of events has been written.

Atlas Reordered AOD

Atlas Reordered AOD

Basket size, zip level,
and split level:

baskets of 2 kB for all
branches, zip level 6,
and full split (level 99)
are optimal for our
data

Atlas Reordered AOD

DPM was tested in Glasgow
Lustre file system at Queen Mary, University of London
1MB or 4kB of read-ahead on DPM
TTreeCache is useful also with posix access

Atlas Reordered AOD

Few tests on EOS:

Read rate of the unoptimized data set was disk bound. Sparse reading of the
randomly distributed 1% of events shows very bad performance. In the case of
unoptimized files we could read at most 90 selected events per second. This is
worse than reading all of the events and just discarding the un-needed ones,
which would give us 127 events/s.

CMS I/O Optimization

In CMSSW 3_x, buffers were fixed-sized and
flushed out to disk whenever they were filled.

A branch with 16KB objects is flushed every
event; a branch with 16 byte objects is flushed
every 1024 events.

Compression ratios varied widely: 16KB
sometimes compressed to hundreds of bytes.

CMSSW 3_x

Brian Bockelman Philippe Canal -- CMS Offline&Computing Week

CMS I/O Optimization

There were no locality guarantees: an event’s
data is spread throughout the file.

The reads were very small.

Small and random reads: just what a disk
hates

Consequences

Brian Bockelman Philippe Canal -- CMS Offline&Computing Week

CMS I/O Optimization

State of the Art:

CMSSW 4_x contains ROOT 5.27/06b,
which has significant I/O improvements over
3_x

CMSSW 4_x also contains modest I/O
improvements on top of out-of-the-box
ROOT I/O

Brian Bockelman Philippe Canal -- CMS Offline&Computing Week

CMS I/O Optimization

New ROOT added:

Auto-flushing: All buffers are flushed to disk
periodically, guaranteeing some level of locality.

Buffer-resizing: Buffers are resized so
approximately the same number of events are in
each buffer.

Read coalescing: “Nearby” reads (but
nonconsecutive) are combined into one.

CMSSW 4_X_X

Brian Bockelman Philippe Canal -- CMS Offline&Computing Week

CMS I/O Optimization

Incremental improvements through 3_x and 4_x:
Only one event tree, improved event read
ordering, TTreeCache became functional, caching
non-event trees.

Improved startup: While TTreeCache is being
trained, we now read all baskets for the first 10
events at once. So, startup is typically one large
read instead of many small ones.

CMSSW 4_X_X

Brian Bockelman Philippe Canal -- CMS Offline&Computing Week

Brian Bockelman Philippe Canal -- CMS Offline&Computing Week

ROOT Optimization results
110509 17:59:35 23873 donvito.2199:18@pccms64 XrootdProtocol: 4900 0 fh=0 read 2176@64970135

110509 17:59:35 23873 donvito.2199:18@pccms64 XrootdResponse: 4900 sending 2176 data bytes; status=0

110509 17:59:35 23873 donvito.2199:18@pccms64 XrootdProtocol: 4a00 req=3013 dlen=0

110509 17:59:35 23873 donvito.2199:18@pccms64 XrootdProtocol: 4a00 0 fh=0 read 1753@65316520

110509 17:59:35 23873 donvito.2199:18@pccms64 XrootdResponse: 4a00 sending 1753 data bytes; status=0

110509 17:59:35 23873 donvito.2199:18@pccms64 XrootdProtocol: 4b00 req=3013 dlen=0

110509 17:59:35 23873 donvito.2199:18@pccms64 XrootdProtocol: 4b00 0 fh=0 read 4493@66445707

110509 17:59:35 23873 donvito.2199:18@pccms64 XrootdResponse: 4b00 sending 4493 data bytes; status=0

110509 17:59:35 23873 donvito.2199:18@pccms64 XrootdProtocol: 4c00 req=3013 dlen=0

110509 17:59:35 23873 donvito.2199:18@pccms64 XrootdProtocol: 4c00 0 fh=0 read 2010@67021064

110509 17:59:35 23873 donvito.2199:18@pccms64 XrootdResponse: 4c00 sending 2010 data bytes; status=0

110509 17:59:35 23873 donvito.2199:18@pccms64 XrootdProtocol: 4d00 req=3013 dlen=0

110509 17:59:35 23873 donvito.2199:18@pccms64 XrootdProtocol: 4d00 0 fh=0 read 4985@67315032

110509 17:59:35 23873 donvito.2199:18@pccms64 XrootdResponse: 4d00 sending 4985 data bytes; status=0

110509 17:59:35 23873 donvito.2199:18@pccms64 XrootdProtocol: 4e00 req=3013 dlen=0

110509 17:59:35 23873 donvito.2199:18@pccms64 XrootdProtocol: 4e00 0 fh=0 read 1566@68390525

110509 17:59:35 23873 donvito.2199:18@pccms64 XrootdResponse: 4e00 sending 1566 data bytes; status=0

110509 17:59:35 23873 donvito.2199:18@pccms64 XrootdProtocol: 4f00 req=3013 dlen=0

110509 17:59:35 23873 donvito.2199:18@pccms64 XrootdProtocol: 4f00 0 fh=0 read 5748@68862703

110509 17:59:35 23873 donvito.2199:18@pccms64 XrootdResponse: 4f00 sending 5748 data bytes; status=0

110509 17:59:35 23873 donvito.2199:18@pccms64 XrootdProtocol: 5000 req=3013 dlen=0

110509 17:59:35 23873 donvito.2199:18@pccms64 XrootdProtocol: 5000 0 fh=0 read 870@70351322

110509 17:59:35 23873 donvito.2199:18@pccms64 XrootdResponse: 5000 sending 870 data bytes; status=0

110509 17:59:35 23873 donvito.2199:18@pccms64 XrootdProtocol: 5100 req=3013 dlen=0

110509 17:59:35 23873 donvito.2199:18@pccms64 XrootdProtocol: 5100 0 fh=0 read 2246@70484565

110509 17:59:35 23873 donvito.2199:18@pccms64 XrootdResponse: 5100 sending 2246 data bytes; status=0

110509 17:59:35 23873 donvito.2199:18@pccms64 XrootdProtocol: 5200 req=3013 dlen=0

110509 17:59:35 23873 donvito.2199:18@pccms64 XrootdProtocol: 5200 0 fh=0 read 2162@72141290

110509 17:59:35 23873 donvito.2199:18@pccms64 XrootdResponse: 5200 sending 2162 data bytes; status=0

110509 17:59:35 23873 donvito.2199:18@pccms64 XrootdProtocol: 5300 req=3013 dlen=0

CMSSW 3_x

ROOT Optimization results
110511 11:34:04 23873 root.26598:16@pccms70 XrootdProtocol: 0400 fh=0 readV 13816@2086738775

110511 11:34:04 23873 root.26598:16@pccms70 XrootdProtocol: 0400 fh=0 readV 11377@2086776641

110511 11:34:04 23873 root.26598:16@pccms70 XrootdProtocol: 0400 fh=0 readV 4412@2086884627

110511 11:34:04 23873 root.26598:16@pccms70 XrootdProtocol: 0400 fh=0 readV 3564@2087058046

110511 11:34:04 23873 root.26598:16@pccms70 XrootdProtocol: 0400 fh=0 readV 16592@2087086178

110511 11:34:04 23873 root.26598:16@pccms70 XrootdProtocol: 0400 fh=0 readV 2571@2087173866

110511 11:34:04 23873 root.26598:16@pccms70 XrootdProtocol: 0400 fh=0 readV 12585@2087185373

110511 11:34:04 23873 root.26598:16@pccms70 XrootdProtocol: 0400 fh=0 readV 2845@2087259661

110511 11:34:04 23873 root.26598:16@pccms70 XrootdResponse: 0400 sending 572878 data bytes; status=0

110511 11:34:04 23873 root.26598:16@pccms70 XrootdProtocol: 0500 req=3025 dlen=5232

110511 11:34:04 23873 root.26598:16@pccms70 XrootdProtocol: 0500 fh=0 readV 30283@2087579185

110511 11:34:04 23873 root.26598:16@pccms70 XrootdProtocol: 0500 fh=0 readV 24492@2087686876

110511 11:34:04 23873 root.26598:16@pccms70 XrootdProtocol: 0500 fh=0 readV 3135@2087778737

110511 11:34:04 23873 root.26598:16@pccms70 XrootdProtocol: 0500 fh=0 readV 5035@2087905049

110511 11:34:04 23873 root.26598:16@pccms70 XrootdProtocol: 0500 fh=0 readV 6038@2087924911

110511 11:34:04 23873 root.26598:16@pccms70 XrootdProtocol: 0500 fh=0 readV 4407@2087995634

110511 11:34:04 23873 root.26598:16@pccms70 XrootdProtocol: 0500 fh=0 readV 15128@2088161040

110511 11:34:04 23873 root.26598:16@pccms70 XrootdProtocol: 0500 fh=0 readV 13578@2088206774

110511 11:34:04 23873 root.26598:16@pccms70 XrootdProtocol: 0500 fh=0 readV 2759@2088256200

110511 11:34:04 23873 root.26598:16@pccms70 XrootdProtocol: 0500 fh=0 readV 4647@2088291409

....

110511 11:34:05 23873 root.26598:16@pccms70 XrootdProtocol: 0400 0 fh=0 read 1024@32000512

110511 11:34:05 23873 root.26598:16@pccms70 XrootdResponse: 0400 sending 1024 data bytes; status=0

110511 11:34:05 23873 root.26598:16@pccms70 XrootdProtocol: 0400 req=3013 dlen=0

110511 11:34:05 23873 root.26598:16@pccms70 XrootdProtocol: 0400 0 fh=0 read 1024@32046080

110511 11:34:05 23873 root.26598:16@pccms70 XrootdResponse: 0400 sending 1024 data bytes; status=0

110511 11:34:05 23873 root.26598:16@pccms70 XrootdProtocol: 0400 req=3013 dlen=0

511 11:34:05 23873 root.26598:16@pccms70 XrootdProtocol: 0400 0 fh=0 read 1024@32134144

CMSSW 4_x

ROOT Optimization results
 1 7 91 1 0 1| 0 832k| 99k 17M| 0 0 |2622 2643
 0 0 100 0 0 0| 0 0 | 22k 29k| 0 0 |1339 2230
 0 0 100 0 0 0| 0 8192B| 25k 46k| 0 0 |1347 2248
 0 0 99 0 0 0| 0 232k| 29k 34k| 0 0 |1416 2276
 1 0 99 0 0 0| 0 48k| 24k 83k| 0 0 |1392 2474
 0 0 99 0 0 0| 0 0 | 29k 56k| 0 0 |1391 2305
 0 0 100 0 0 0| 0 32k| 30k 38k| 0 0 |1396 2312
 0 0 100 0 0 0| 0 0 | 24k 37k| 0 0 |1352 2254
 0 0 99 0 0 0| 0 104k| 27k 37k| 0 0 |1388 2282
 0 0 100 0 0 0| 0 0 | 32k 41k| 0 0 |1377 2309
 1 0 99 0 0 0| 0 0 | 25k 46k| 0 0 |1369 2242
 1 10 87 1 0 1| 0 448k| 158k 21M| 0 0 |2937 2658
 0 0 100 0 0 0| 0 12k| 33k 144k| 0 0 |1397 2333
 0 0 99 0 0 0| 0 368k| 25k 86k| 0 0 |1448 2271
 0 0 100 0 0 0| 0 80k| 29k 47k| 0 0 |1412 2338
 0 0 99 0 0 0| 0 0 | 31k 46k| 0 0 |1405 2336
 1 0 99 0 0 0| 0 32k| 25k 50k| 0 0 |1382 2273
 0 0 100 0 0 0| 0 0 | 26k 36k| 0 0 |1362 2265
 0 0 99 0 0 0| 0 20k| 31k 33k| 0 0 |1412 2364
 0 0 100 0 0 0| 0 80k| 22k 26k| 0 0 |1362 2248
 1 0 100 0 0 0| 0 88k| 25k 28k| 0 0 |1374 2289
 1 1 99 0 0 0| 0 32k| 29k 46k| 0 0 |1416 2517
 0 0 100 0 0 0| 0 0 | 25k 100k| 0 0 |1383 2297
 1 0 99 0 0 0| 0 12k| 24k 25k| 0 0 |1369 2266
 0 0 99 0 0 0| 0 148k| 30k 41k| 0 0 |1414 2320
 1 10 88 1 0 1| 0 432k| 150k 21M| 0 0 |2933 2657

CMSSW 4_x

Network utilization

Network spike
17-20MB/s

small or no network
utilization

CMS I/O Optimization

Comparing 5.27 with ROOT trunk:

5% performance increase in AOD unstreaming.

15% performance increase in ROOT “Event”
unstreaming.

Unstreaming uncompressed data goes at
326MB/s.

“Real” Asynchronous prefetch (using threads and
double-buffering)

Upcoming Enhancements

Brian Bockelman Philippe Canal -- CMS Offline&Computing Week

Storage manager software

Optimizing storage access performance

We need to measure the efficiency of each
storage system and try to understand
which and in which configuration could
serve better the LHC analysis jobs

System under test:

Lustre, HDFS, Xrootd, Glusterfs, ext3

Storage Systems under Test
Server:

Lustre 2.0:
3 RAID5 FS. Stripe-unit size: 128 KB. 5 Data disk each

Xrootd 3.0.0:
13x1TB single disks. EXT3 FS

hadoop-0.20.2 (from http://newman.ultralight.org/)

13x1TB single disks. EXT3 FS

Clients:
SLC5.4 kernel 2.6.18-194.11.3
Fuse: fuse-libs-2.7.4-8
FUSE mount on the client (rdbuffer=32768)

CMSSW 3_10_1

http://newman.ultralight.org/repos/
http://newman.ultralight.org/repos/

Xrootd: performance consideration
MTR3 CMS job looks like very random application:

Small read operation
quite random read seek operation

We measure the CPU efficiency during the run (CPUTime/
WallTime)

Used bandwidth is not a good metrics

Surprisingly big RAID5 with Fiber Channel controller performs
worst than simple single SATA disk for a single job

It was difficult to obtain >40% in cpu efficiency using raid5
While it was easy to got 90% with a single disk

The problem seems to be correlated with IOPS and stripe size on
the controller

The initial test point is 1MB of stripe size (on the RAID5)

Reconfiguring the raid to 256kb of stripe size we easily
got 80% of CPU efficiency for a single job

"cacheSize" value="20048576" ## "cacheHint" value="storage-only" ##
"readHint" value="read-ahead-buffered"

looking to the used bandwidth: a single job is able to
read at about 3MB/s constantly

We tested: xfs, ext3, ext4
no mayor differences observed

We tried to run up to 120 concurrent jobs against the
same server:

100MB/s of aggregated bandwidth at maximum
~40% of CPU efficiency

Xrootd: performance consideration

It is clearly limited by disk IO
High I/O wait on the server

The network is not a big issue here
Changing the IO parameters in CMSSW do not add big
improvements
The raid controller under test do not support smallest
stripe size
This gives a measure of the scalability in “job-per-server” of
the disk sub-system

maybe a single-disk configuration could give better
performances

more test are still needed using “JBOD configuration”

Xrootd: performance consideration

Lustre: Performance
Tuning a bit CMSSW parameters we easily got ~86% of
CPU efficiency

"cacheSize" value="20048576" ## "cacheHint" value="lazy-download" ##
"readHint" value="read-ahead-buffered"

Using a posix file-system the framework do not really
download the files, but does only read-ahead-buffered
The configuration of the raid controller here do not
affect to much the performance

With this configuration a single job could read data with
spikes of 50-60MB/s

there are, obviously, periods of time in which the job do
not read data

0

22,5

45,0

67,5

90,0

1 job 50 jobs 120 jobs

CPU efficiency

%CPU

• In case of lustre, we observed that
increasing the "cacheSize" could
reduce the I/O on the disks

• but this easily could become a
bottleneck on the network

• For example running 120 jobs against
a single disk server could require more
than 250MB/s on the network

• If we reduce the "cacheSize" to 2MB
this reduces the load on the network
but increases the load on the disk
subsystem

Lustre: Performance

SSD test

In order to be sure that we have a limitation on the
storage sub-system we tested an SSD disk with an
Xrootd server

a single MLC SSD (256GB) is able to provide
data to 50 concurrent jobs without losing in
CPU efficiency

0

21,5

43,0

64,5

86,0

1 job 50 jobs

CPU efficiency

CPU%

Optimising the Single job

Native disk

Hadoop

Hadoop opt

Hadoop opt rem

xrootd same host

GlusterFS

Lustre

0 22,5 45,0 67,5 90,0

%CPU

Optimising the Single job
“Hadoop opt”=> rdbuffer=32768

The CMSSW (cacheHint,readHint,cacheSize) tuning
parameters are always used and tested until the best result is
found

“blockdev --setra” on each drive, was tuned in order to find the
best solution

It is possible to obtain the same performance with up to 4-5
concurrent job per single native disk

Glusterfs: tuning iocache/read-ahead page-size in
glusterfs.vol.sample

Lustre: tuning read-ahead in: /proc/fs/lustre/llite/lustre-*/
max_read_ahead_mb and /proc/fs/lustre/llite/lustre-*/
max_read_ahead_per_file_mb

Performance Tests
up to 116 concurrent jobs
production farm used to run the jobs
Each file on the server is used only by a single job

There is no “concurrency” on each file

A single disk server:
10Gbit/s network card
deep network testing to assure there are no
network bottleneck
>400MB/s measured disk-to-network
bandwidth

Performance test: hadoop vs xrootd
Running 56 concurrent jobs

Using 6 disks for xrootd

Using 13 disks on hadoop installation

Reading data using “fuse optimized“

Single server: no “block replica”

0

8,25

16,50

24,75

33,00

Hadoop 13 disks
xrootd 6 disks

%CPU

We have observed huge load on
the server while running “hadoop
test”

increasing the memory for java
produced only small
improvements

Performance Tests: lustre vs xrootd
• Running 116 concurrent jobs
• Reading ~1TB of data
• Always measuring the CPU efficiency

• This is an interesting parameter both from user’s point
of view and from a site admin

0

8,75

17,50

26,25

35,00

xrootd
lustre

%CPU

• The network usage of the two
solution is completely
different (see next slide)

• In both cases the disk
subsystem on the server is
the bottleneck

Performance Tests: lustre vs xrootd

Lustre
Xrootd

Reading Root data remotely
The I/O optimization work on ROOT and
CMSSW give us also the opportunity to explore
the possibility to access data remotely

Italian test:
CMSSW 4_1_3, I/O bound
analysis
ping time = ~12ms
Job running in LNL data @Bari
CPU efficiency drop from 68%
to 50% => ~30% of
performance drop

U.S.

Test

Infrastructure scaling

Client-server vs Peer-Network
Client-server (i.e. Lustre):

Pro:
adding more server => ~linear scalability
good performance
fully posix compliance

Cons:
Failure of a server affect the operations
Need a good network design
Need powerful storage servers

Client-server vs Peer-Network
Peer-Network (i.e. HDFS):

Pro:
failure os a server is not blocking
fits well with cheap hardware
the network is less critical and costly

Cons:
CPU efficiency and performance lower than
parallel file systems
requires more rack space/power ...
not fully posix compliance

Client-server vs Peer-Network

We always need to move data:
MapReduce algorithm also need to “move” from local
disk

With a good network it could be faster
Nx1Gbit/s link could be needed on all the WN quite
soon anyway

Power consumption and space do also have a cost
The real difference is about failures
Using HDFS in HEP analysis, the CPU efficiency looks
worst than Lustre/Xrootd

A critical view of the problems

Worker Node network
24 Cores right now => +50% next year
1 Gbps could be not enough (=> ~5MB/s
per slot)
2 x 1Gbps could be enough for at least 1.5
years

in the next future 10Gbps on the WN
should be a must
maybe multi(many) core aware
application could help

Peer-Network
CORE Switch

EDGE Switch EDGE Switch

Nx10GpsNx1Gps

WNWNWN WN WNWNWN WN

In the HEP environment it is not so easy to exploit
“affinity scheduling” algorithms so “rack
awareness” does not help so much

==> you need a good network anyway

Client-Server
CORE Switch

EDGE Switch EDGE Switch

Nx10GpsNx1Gps

Storage
Server

WNWNWN Storage
Server

WNWNWN

With a smart design, the network cost in the two
scenario could be basically the same

Hadoop large scale tests
160 concurrent ROOT jobs
2.5TB of input data completely analyzed in about 60min
average ~20% of CPU efficiency

disk server

WN aggregate

0.5Gbyte/s

250MB/s

=> ~800MB/s of effective ROOT I/O

Optimized ROOT code
Running “copy-event”
CMSSW_4_X application
could require up to 40MB/s
flat on a single core

the plot show how a
single LUSTRE server
performs with 25
concurrent “copy-event”
jobs

~50% of CPU efficiency

Hadoop “large” scale test
Using hadoop on 130WN (1 disk per WN)
+1 disk server

Sequential
(concurrent)
read and write

easy to go up
to: 2.6GByte/s

2.5Gbyte/s

Lustre “large” scale test
Production environment
20 Server

130 WN

Real
analysis
jobs

2.2Gbyte/s

Hadoop failure test

9TB node failure2 Gbyte/s

2 Gbyte/s

Less then 1 hour to
recover from a big host

failure

Hadoop failure test
Single disk failure

1 Gbyte/s

Less than 5
minute to
recovery

from a single
disk failure

Conclusions
Applications developers are working hardly to try
to improve the overall performance

The access to data is less “random” now and it
will be more efficient in the next releases...
but, it will surely become much more bandwidth
demanding in the future

CPU Technology is evolving putting new problems
(many-cores)

Conclusions
Peer infrastructure are giving new possibilities

Still suffering on peak performance and
great benefit on failure resilience

The local area network is evolving too:
the available bandwidth/€ is increasing
rapidly
IB technology is becoming affordable
compared with 10Gps ethernet technology

Back-up slides

HDFS vs Lustre

Nathan Rutman, Xyratex
James B. Hofmann, Naval
Research Laboratory

HDFS vs Lustre

Nathan Rutman, Xyratex
James B. Hofmann, Naval
Research Laboratory

HDFS vs Lustre
Assume Lustre IB has 2x performance of HDFS 1GigE

3x for our sort benchmark

Top 500 LINPACK efficiency: 1GigE ~45-50%, 4xQDR ~90-95%
 Lustre / IB Cluster HDFS / 1 GigE Cluster

 Count Price Subtotal Count Price Subtotal

Nodes 100 $7,500 $750,000 200 $7,500 $1,500,000

Switches 9 $6,500 $58,500 12 $4,000 $48,000

Cables 178 $100 $17,800 450 $10 $4,500

OSS 2 $52,000 $104,000 0 --- ---

Storage 128TB --- --- 384TB $100 $38,400

MDS 1 $34,000 $34,000 0 --- ---

Racks 4 $8,000 $32,000 6 $8,000 $48,000

Total $996,300 $1,638,900

!

Nathan Rutman, Xyratex
James B. Hofmann, Naval
Research Laboratory

Acknowledge

testing on the storage technologies was
supported by the MIUR (Italian Ministry
for Education, University and Research) in
the PRIN2008 project, under grant prot.
2008MHENNA 003.

