
E
M

I
IN

F
S
O

-R
I-

2
6

1
6

1
1

E
M

I
IN

F
S
O

-R
I-

2
6

1
6
1

1

How Argus can simplify your life

Andrea Ceccanti (INFN)

On behalf of the Argus PT

1

What is authorization?

E
M

I
IN

F
S
O

-R
I-

2
6

1
6

1
1

Can user X

 perform action Y

 on resource Z

?

E
M

I
IN

F
S
O

-R
I-

2
6

1
6

1
1

Authorization examples

● Can user X
− execute on this Worker node?

− submit a job on this CREAM CE?

− access this storage area?

− submit a job on this WMS instance?

E
M

I
IN

F
S
O

-R
I-

2
6

1
6

1
1

Motivations for Argus

● Each Grid service has its own authorization mechanism
− Administrators need to know them all

− Authorization rules at a site are difficoult to understand and
manage

● No global banning mechanism
− Urgent ban of malicious users cannot be easily and timely

implemented on distributed sites

● Authorization policies are static
− Hard to change policies without reconfiguring services

● Monitoring AuthZ decisions is hard

E
M

I
IN

F
S
O

-R
I-

2
6

1
6

1
1

Argus

● A generic authorization system
− Built on top of an XACML policy engine

− renders consistent authorization decisions based on XACML
policies

E
M

I
IN

F
S
O

-R
I-

2
6

1
6

1
1

Argus components

● Policy Administration Point (PAP)
− Provides administrators with the tools to author policies

− Stores and manages authored XACML policies

− Provides managed authorization policies to other authorization
service components (other PAPs or PDPs)

● Policy Decision Point (PDP)
− Policy evaluation engine

− Receives authorization requests from the PEP

− Evaluates requests against policies fetched from the PAP

− Renders the authorization decision

E
M

I
IN

F
S
O

-R
I-

2
6

1
6

1
1

Argus components (cont.)

● Policy Enforcement Point (PEP)
− Client/Server architecture

− Lightweight PEP client libraries (C and Java)

− PEP server receives the authorization requests from PEP
clients
– Transform lightweight internal request in XACML request

– Applies a configurable set of filters (PIPs) to the incoming request

– Asks the PDP to render an authorization decision

– Applies Obligation Handler to determine user mapping, if requested by
the PDP

E
M

I
IN

F
S
O

-R
I-

2
6

1
6

1
1

Argus service deployment

E
M

I
IN

F
S
O

-R
I-

2
6

1
6

1
1
Hierarchical policy distribution

E
M

I
IN

F
S
O

-R
I-

2
6

1
6

1
1

Argus policies

Argus is designed to answer the question:

Can user X perform action Y on resource Z?

Argus policies contain rules that state which actions can be
performed on which resources by which users.

Argus uses XACML v.2.0 as the policy language.
however, XACML is hard to read and write, so we developed
a Simplified Policy Language (SPL) to suit our needs

E
M

I
IN

F
S
O

-R
I-

2
6

1
6

1
1

The banning use case

User X should not be allowed to do
anything on any resource

(for this example X will be my certificate subject)

E
M

I
IN

F
S
O

-R
I-

2
6

1
6

1
1

The XACML banning policy

... ?

E
M

I
IN

F
S
O

-R
I-

2
6

1
6

1
1

The SPL policy

resource ".*" {

action ".*" {

rule deny {

subject="CN=Andrea Ceccanti,L=CNAF,OU=Personal Certificate,O=INFN,C=IT"

}

}

}

E
M

I
IN

F
S
O

-R
I-

2
6

1
6

1
1

Identifying Actions and Resources

● Actions and resources are identified by unique “names”
that are assigned to them

− Tipycally URIs, but any string will work

● Resource ID example:
− http://authz.cnaf.infn.it/resource/cream-ce

● Action ID example:
− http://authz.cnaf.infn.it/action/submit-job

http://authz.cnaf.infn.it/resource/cream-ce
http://authz.cnaf.infn.it/action/submit-job

E
M

I
IN

F
S
O

-R
I-

2
6

1
6

1
1

Identifying subjects

A Subject in a policy can be identified via the following
attributes:

● subject, an X509 certificate subject
subject=“CN=Andrea Ceccanti,L=CNAF,OU=Personal Certificate,O=INFN,C=IT”

● ca, the CA certificate subject
ca=”CN=INFN CA,O=INFN,C=IT”

● vo, the name of the Virtual Organization
vo=”cms”

● fqan, a VOMS fully qualified attribute name
fqan=”/atlas/production”

● pfqan, the VOMS primary FQAN
pfqan=”/atlas/Role=pilot”

E
M

I
IN

F
S
O

-R
I-

2
6

1
6

1
1

SPL Syntax
resource <value> {

action <value> {

rule <permit|deny> {

<attributeId> = <attributeValue>

}
...

}
...

}

...

Order matters!

E
M

I
IN

F
S
O

-R
I-

2
6

1
6

1
1

Examples

We have two CEs at our site, ce_1 and ce_2. We
want to authorize Andrea Ceccanti to contact one but
not the other.

resource “ce_1”{
action “.*” {

rule permit {
subject = “CN=Andrea Ceccanti,L=CNAF,OU=Personal Certificate,O=INFN,C=IT”

}
}
}

resource “ce_2”{
action “.*” {

rule deny{
subject = “CN=Andrea Ceccanti,L=CNAF,OU=Personal Certificate,O=INFN,C=IT”

}
}
}

E
M

I
IN

F
S
O

-R
I-

2
6

1
6

1
1

Examples

We want to ban users from VO ‘test_vo’ from ce_1 but not
those who have a certificate signed by INFN CA.

resource “ce_1”{
action “.*” {

rule permit {
vo = “test_vo”
ca = “CN=INFN CA,O=INFN,C=IT”

}

rule deny { vo = “test_vo” }
}
}

E
M

I
IN

F
S
O

-R
I-

2
6

1
6

1
1

The pap-admin tool

● List currently active policies:
− pap-admin list-policies

● Import policies expressed in SPL from a file:
− pap-admin add-policies-from-file policies.txt

● Ban/Unban users:
− pap-admin ban vo atlas

− pap-admin unban vo atlas

● Add a generic permit/deny policies
− pap-admin add-policy --resource “ce_1” --action “.*” \

permit fqan=”/atlas/production”

E
M

I
IN

F
S
O

-R
I-

2
6

1
6

1
1

Current Argus release

● Argus 1.3
− First EMI release

− Backwards compatible with gLite 3.2 client libraries

− Support for LFC/DPM banning engine

− Bug fixes

● https://savannah.cern.ch/task/?18586

https://savannah.cern.ch/task/?18586

E
M

I
IN

F
S
O

-R
I-

2
6

1
6

1
1

So why Argus simplifies my life?

● A single authorization point for many grid services

● A simple, flexible and powerful language to express
authorization policies

● A simple tool to manage policies

● A policy distribution mechanism that allow to import
policies from remote sites while keeping full authorization
control on local resources

E
M

I
IN

F
S
O

-R
I-

2
6

1
6

1
1

Documentation

● General documentation
https://twiki.cern.ch/twiki/bin/view/EGEE/AuthorizationFramework

● Service Reference Card
https://twiki.cern.ch/twiki/bin/view/EMI/ArgusSRC

● PAP admin CLI
● https://twiki.cern.ch/twiki/bin/view/EGEE/AuthZPAPCLI

● Simplified Policy Language
https://twiki.cern.ch/twiki/bin/view/EGEE/SimplifiedPolicyLanguage

https://twiki.cern.ch/twiki/bin/view/EGEE/AuthorizationFramework
https://twiki.cern.ch/twiki/bin/view/EMI/ArgusSRC
https://twiki.cern.ch/twiki/bin/view/EGEE/AuthZPAPCLI
https://twiki.cern.ch/twiki/bin/view/EGEE/SimplifiedPolicyLanguage

E
M

I
IN

F
S
O

-R
I-

2
6

1
6

1
1

E
M

I
IN

F
S
O

-R
I-

2
6

1
6

1
1

E
M

I
IN

F
S
O

-R
I-

2
6

1
6
1

1

EMI is partially funded by the European Commission under Grant Agreement
INFSO-RI-261611

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

