
Davide Salomoni, Anna Karen Calabrese Melcarne,
Gianni Dalla Torre, Alessandro Italiano,
Andrea Chierici

Workshop CCR-INFNGrid, 2011

Performance Improvements
in a Large-Scale
Virtualization System

2

Why this presentation

 CNAF deeply involved in virtualization
 WNoDeS
 CCR Virtualization group
 Modern CPU “ask” to be used with virtualization

 Will show all the tests we performed aimed
to solve bottlenecks and to improve virtual
machines speed

 These results do not apply only to WNoDeS
 See also SR-IOV poster

3

WNoDeS Release Schedule
  WNoDeS 1 released in May 2010
  WNoDeS 2 “Harvest” public release scheduled for September 2011

  More flexibility in VLAN usage - supports VLAN confinement to certain hypervisors only
  libvirt now used to manage and monitor VMs

  Either locally or via a Web app
  Improved handling of VM images

  Automatic purge of “old” VM images on hypervisors
  Image tagging now supported
  Download of VM images to hypervisors via either http or Posix I/O

  Hooks for porting WNoDeS to LRMS other than LSF
  Internal changes

  Improved handling of Cloud resources
  New plug-in architecture

  Performance, management and usability improvements
  Direct support for LVM partitioning, significant performance increase with local I/O
  Support for local sshfs or nfs gateways to a large distributed file system
  New web application for Cloud provisioning and monitoring, improved command line tools

4

Alternatives to mounting
GPFS on VMs
  Preliminary remark: the distributed file system

adopted by the INFN Tier-1 is GPFS
  Serving about 8 PB of disk storage directly, and

transparently interfacing to 10 PB of tape storage via
INFN’s GEMSS (an MSS solution based on StoRM/
GPFS)

  The issue, not strictly GPFS-specific, is that any
CPU core may become a GPFS (or any other
distributed FS) client. This leads to GPFS clusters of
several thousands of nodes (WNoDeS currently
serves about 2,000 VMs at the INFN Tier-1)
  This is large, even according to IBM, requires special care

and tuning, and may impact performance and functionality
of the cluster

  This will only get worse with the steady increase in the
number of CPU cores in processors

  We investigated two alternatives, both assuming that an
HV would distributed data to its own VMs

  sshfs, a FUSE-based solution
  a GPFS-to-NFS export

Hypervisor (no GPFS)

VM
(GPFS)

VM
(GPFS)

VM
(GPFS)

GPFS-based
Storage

VM
(sshfs)

VM
(sshfs)

VM
(sshfs)

GPFS-based
Storage

Hypervisor ({sshfs,nfs}-to-GPFS)

5

sshfs vs. nfs: throughput
  sshfs throughput constrained by encryption (even with the lowest possible encryption level)
  Marked improvement (throughput better than nfs) using sshfs with no encryption through

socat, esp. with some tuning
  File permissions are not straightforward with socat, though

(*) socat options: direct_io,
no_readahead, sshfs_sync

GPFS on VMs (current setup)

6

sshfs vs. nfs: CPU usage

Write

Read

Overall, socat-
based sshfs w/
appropriate
options seems the
best performer

(*) socat options: direct_io,
no_readahead, sshfs_sync

GPFS on VMs (current setup)

GPFS on VMs (current setup)

7

sshfs vs. nfs Conclusions
  An alternative to direct mount of GPFS filesystems on thousands of VMs

is available via hypervisor-based gateways, distributing data to VMs
  Overhead, due to the additional layer in between, is present. Still, with

some tuning it is possible to get quite respectable performance
 sshfs, in particular, performs very well, once you take encryption out. But one

needs to be careful with file permission mapping between sshfs and GPFS,

  Watch for VM-specific caveats
 For example, WNoDeS supports hypervisors and VMs to be put in multiple VLANs

(VMs themselves may reside in different VLANs)
  Support for sshfs or nfs gateways is scheduled to be included in

WNoDeS 2 “Harvest”

  VirtFS (Plan 9 folder sharing over Virtio - I/O virtualization framework)
investigation in the future, but native support by RH/SL currently missing

8

VM-related Performance Tests
  Preliminary remark: WNoDes uses KVM-based VMs, exploiting the KVM -snapshot flag

  This allows us to download (via either http or Posix I/O) a single read-only VM image to each
hypervisor, and run VMs writing automatically purged delta files only. This saves substantial disk
space, and time to locally replicate the images

  We do not run VMs stored on remote storage - at the INFN Tier-1, the network layer is stressed out
enough by user applications

  Tests performed:
  SL6 vs SL5

  Classic HEP-Spec06 for CPU performance
  Iozone for local I/O

  Network I/O:
  virtio-net has been proven to be quite efficient (90% or more of wire speed)
  We tested SR-IOV, see the dedicated poster (if you like, vote it!)

  Disk caching is (should have been) disabled in all tests
  Local I/O has typically been a problem for VMs

  WNoDeS not an exception, esp. due to its use of the KVM -snapshot flag
  The next WNoDeS release will still use -snapshot, but for the root partition only; /tmp and local

user data will reside on a (host-based) LVM partition

9

Testing set-up

 HW: 4x Intel E5420, 16 GB RAM, 2x 10k rpm SAS disk
using a LSI Logic RAID controller

 SL5.5: kernel 2.6.18-194.32.1.el5, kvm-83-164.el5_5.9
 SL 6: kernel 2.6.32-71.24.1, qemu-kvm-0.12.1.2-2.113
 SR-IOV: tests on a 2x Intel E5520, 24 GB RAM with an

Intel 82576 SR-IOV card

  iozone:
iozone -Mce -l -+r -r 256k -s <2xRAM>g -f <filepath>
-i0 -i1 -i2

10

HS06 on Hypervisors and VMs (E5420)
  Slight performance increase of SL6 vs. SL5.5 on the hypervisor

  Around +3% (exception made for 12 instances: -4%)
  Performance penalty of SL5.5 VMs on SL5.5 HV: -2.5%
  Unexpected performance loss of SL5.5 VMs on SL6 vs. SL5.5 HV

  ept — Extended Page Tables, an Intel feature to make emulation of guest page tables faster.

0	

10	

20	

30	

40	

50	

60	

70	

80	

1	 4	 8	 12	

HE
P-‐
SP
EC

06
	

#	 of	 instances	

Physical	 Machine	 -‐	 SL5.5	 vs	 RHEL6	 vs	 SL6	

SL5.5	 Rhel6	 sl6	

0	

10	

20	

30	

40	

50	

60	

70	

80	

1	 4	 8	 12	

HE
P-‐
SP
EC

06
	

#	 of	 parallel	 VMs	

SL5.5	 phys	 vs	 virtual,	 HEP-‐SPEC06	

SL5.5	 sl5.5	 su	 sl6	 sl5.5	 su	 sl6	 ept=0	

11

iozone on SL5.5 (SL5.5 VMs)
  iozone tests with caching disabled, file size 4 GB on VMs with 2GB RAM
  host with SL5.5 taken as reference
  VM on SL5.5 with just -snapshot crashed
  Based on these tests, WNoDeS will support -snapshot for the root partition and a (dynamically created)

native LVM partition for /tmp and for user data
  A per-VM single file or partition would generally perform better, but then we’d practically lose VM instantiation dynamism

12

iozone on SL6 (SL5.5 VMs)
  Consistently with what was seen with some CPU performance tests, iozone on SL6 surprisingly performs

often worse than on SL5.5
  Assuming RHEL6 performance will be improved by RH, using VM with -snapshot for the root partition and a

native LVM patition for /tmp and user data in WNoDes seems a good choice here as well
  But we will not upgrade HVs to SL6 until we are able to get reasonable results in this area

0	

50000	

100000	

150000	

200000	

250000	

write	 rewrite	 read	 reread	 rand	 read	 rand	 write	

kB
/s
ec
	

VMs	 lvm	 and	 snap,	 on	 sl6	 host	

host	 sl6	 2	 concurrent	 VMs	 4	 concurrent	 VMs	 8	 concurrent	 VMs	

0	

50000	

100000	

150000	

200000	

250000	

write	 rewrite	 read	 reread	 rand	 read	 rand	 write	

kB
/s
ec
	

VMs	 lvm	 and	 snap,	 on	 SL5	 host	

host	 SL5	 2	 concurrent	 VMs	 4	 concurrent	 VMs	 8	 concurrent	 VMs	

13

iozone on QCOW2 image file

0	

50000	

100000	

150000	

200000	

250000	

write	 rewrite	 read	 reread	 rand	 read	 rand	 write	

kB
/s
	

VMs	 with	 QCOW2	 image	

vm	 sl5	 qcow	 	 vm	 sl5	 qcow	 2nd	 run	 host	 sl6	 host	 SL5	

14

Network

  SR-IOV slightly
better than virtio
wrt throughput

  Disappointing
SR-IOV
performance wrt
latency, CPU
utilization

15

The problem we see for the
future
 Number of cores in modern CPUs is

constantly increasing
 Virtualizing to optimize (cpu/ram) resources

is not enough
 O(20) cores per cpu will require 10GBps nics (at

least at T1)
 Disk i/o is still a problem (it was the same last

year, no significant improvement has been done)

16

Technology improvements
 SSDs may help

 Did not arrive on time to be tested
 Great expectations, but price will prevent massive

adoption at least in 2011
 SR-IOV nics are very interesting

 Drivers have to improve
 SL6: virtualization embedded

 KSM, hugetlbfs, pci-passthrough
 Still problems with performance

 KVM VirtFS: para-virtualized FS

17

Conclusions
  VM performance tuning still requires detailed knowledge of system internals and

sometimes of application behaviors
  Many improvements of various types have generally been implemented in hypervisors and in VM

management systems. Some not described here are:
  VM pinning. Watch out for I/O subtleties in CPU hardware architectures.
  Advanced VM brokerage. WNoDeS fully uses LRMS-based brokering for VM allocations; thanks to this, algorithms

for e.g. grouping VMs to partition I/O traffic (for example, to group together all VMs belonging to a certain VO/user
group) or to minimize the number of active physical hardware (for example, to suspend / hibernate / turn off unused
hardware) can be easily implemented (whether to do it or not depends much on the data centers infrastructure /
applications)

  The steady increase in the number of cores per physical hardware has a
significant impact in the number of virtualized systems even on a medium-sized
farm
  This is important both for access to distributed storage, and for the set-up of traditional batch system

clusters (e.g. the size of a batch farm easily increases by an order of magnitude with VMs).

  The difficulty is not so much in virtualizing (even a large number of) resources. It is
much more in having a dynamic, scalable, extensible, efficient architecture,
integrated with local, Grid, Cloud access interfaces and with large storage
systems.

