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Hubble tension

Hubble tension

5σ discrepancy between Planck1 and SH0ES2 inference of H0.
Planck measured 100θs = 1.0411 ± 0.0003 with

θs =
rs(z∗)

DA(z∗)
, (1)

having defined

rs(z∗) =

∫ zre

z∗

dz
H(z)

cs(z) , DA(z∗) =

∫ z∗

0
dz

1
H(z)

. (2)

The 0.03% measurement of the angle θs can accommodate the
≈ 10% increase in H0 if there is a commensurate increase in
H(z ∼ z∗).

1Planck collaboration, 2018
2A. G. Riess et al., 2021
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Early Dark Energy

Early Dark Energy

Proposal: reduce the sound horizon with an ultralight scalar axion3

satisfying
φ̈+ 3Hφ̇+ V ′ = 0 (3)

where the best fitting potential is given by

EDE potential

V (φ) = V0

[
1 − cos

(φ
f

)]3
(4)

= V0

[
5
2
− 15

4
cos
(φ
f

)
+

3
2
cos

(
2φ
f

)
− 1

4
cos

(
3φ
f

)]
.

with V0 = m2f 2. This is such at the minimum V ∝ ϕ6 and thus
the energy density redshifts as a−9/2.

3V. Poulin, T. L. Smith, T. Karwal and M. Kamionkowski, 2019
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Early Dark Energy

The parameter at which we are aiming are
Recombination of electron and protons when T ∼ eV giving us
V0 ∼ eV4

mass comparable to the Hubble scale at recombination
H ∼ T 2/MP giving m ∼ 10−27 eV and from fit one singles out
f ∼ 0.2MP as the preferred value4

We will construct our models in the context of moduli stabilisation
of Type IIB String Theory.

4E. McDonough, M.-X. Lin, J. C. Hill, W. Hu and S. Zhou, 2022
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Useful equations

Given the superpotential W and the Kähler potential K , in the
SUGRA approximation of Type IIB we compute the scalar potential
as

V = eK
(
DIW K I J̄DJ̄W − 3|W |2

)
, (5)

with DIW = WI +WKI .
Then, the gravitino mass is given by

m3/2 = eK/2|W | . (6)
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KKLT

KKLT

Chiral field T and nilpotent field X

W = W0 +MX + Ae−aT , (7)

K = −3 ln
(
T + T̄

)
+ 3

XX̄

T + T̄
, (8)

leading to

VKKLT =
a2A2e−2aτ

6τ
+

aA2e−2aτ

2τ2 − aA|W0|e−aτ

2τ2 +
M2

12τ2 . (9)
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KKLT

Imposing a Minkowski minimum we find

|W0| =
2
3
A aτ e−aτ

(
1 +

5
2aτ

)
,

M =
√

2aA e−aτ
√
aτ + 2 .

(10)

Thus, the gravitino mass is

m3/2 =
A a

3
√

2τ
e−aτ . (11)
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LVS

LVS

K = −2 ln

(
V +

ξ̂

2

)
+

X̄X

V2/3 , (12)

having defined the volume as

Swiss-Cheese CY: V = τ
3/2
b − τ

3/2
s (13)

Fibrated CY: V =
√
τ1τ2 − τ

3/2
s (14)

with chiral fields Tk = τk + iθk (k = b, s or k = 1, 2, s
respectively). Moreover the superpotential is

W = W0 +MX +
∑
k

Ak e
−akTk , (15)

obtaining

VLVS =
8a2

sA
2
s e

−2asτs√τs
3V

− 4asAsτs |W0| e−asτs

V2 +
3|W0|2ξ̂

4V3 +
M2

V4/3 .



Hubble tension and EDE Moduli stabilisation EDE in KKLT EDE in LVS Conclusions

LVS

The potential admits a global Minkowski minimum at

V ≃
3|W0|

√
τs

4asAs
easτs ≃ |W0| e

as
gs
( ξ

2)
2/3

, (16)

τs =

(
ξ

2

)2/3 1
gs

, (17)

M2 =
27
20

|W0|2

as

√
τs

V5/3 . (18)

Moreover, the gravitino mass turns out to be

m3/2 =
|W0|
V

≃ e−
as
gs
( ξ

2)
2/3

. (19)
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Odd axions

Odd axions

We define the 4-dimensional axion fields as,

ba =

∫
Σa

B2 , ca =

∫
Σa

C2 , θα =

∫
Dα

C4 , (20)

giving the chiral coordinates

G a = S̄ba + ica =
ba

gs
+ i(ca − C0b

a) , τα =
1
2
kαβγ t

βtγ , (21)

Tα = τα + iθα − 1
4
gskαabG

a(G + Ḡ )b . (22)

In order to introduce the axions in the EFT we need
non-perturbative effects.
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Odd axions

D7-branes

D1 D2

D7D7

involution

D1 D2

D7

involution
D+

WD7 = A e−
2π
N fD7 , (23)

where fD7 reads

D7 on D1 : fD7 = T + k (f+ + f−)G +
1
2

(
kf2− + k̃f2+ + 2kf+f−

)
S̄ ,

D7 on D+ : fD7 = T + kf− G +
1
2

(
kf2− + k̃f2+

)
S̄ .
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Odd axions

ED1-instatons and gaugino condensation on D5-branes

We propose for ED1 instantons

KED1 = −3 ln

Re (T )− 2γ
g2
s

b2 + ...+
∑
n∈N
f̂−∈Z

An,̂f−
e
−2πn

(
t√
gs
+k f̂−G

) ,

(24)

with t =

√
2
k̃

(
Re (T )− 2γ

g2
s
b2
)
.

Furthermore, we propose for gaugino condensation on D5-branes

KD5 = −3 ln

(
Re (T )− 2γ

g2
s

b2 + ...+

p∑
i=1

Ai e
− 2π

Ni

(
t√
gs
+kfiG

))
.

(25)



Hubble tension and EDE Moduli stabilisation EDE in KKLT EDE in LVS Conclusions

EDE in KKLT

We need three contributions to construct the (1 − cos)3 potential

K = −3 ln
[
T + T̄ − γ(G + Ḡ )2

]
+ 3

X̄X

T + T̄
, (26)

W = W0 +MX + A e−aT +
3∑

n=1

An e
−ã(T+nkfG) , (27)

with a = 2π
N < ã = 2π

M ⇔ M < N.

Computing we reproduce the EDE potential with the field defined as

φ =

√
6γ
τ

c , (28)

with γ = −1
4gsk , and having defined A1 = 15 Ã/4, A2 = −3 Ã/2

and A3 = Ã/4.
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The important quantities are

EDE in KKLT with C2 axion

f =

√
6 γ
τ

1
ã|k|f

=

√
3gs

2|k | τ
1
ãf

, (29)

V0 =
N Ã√
2 τ3/2

(
2
M

− 3
N

)(
m3/2

MP

)
e
− 3

4π
gsM

|k|f2

(
MP
f

)2

M4
P . (30)

Imposing f = 0.2MP , V0 ∼ eV4 and m3/2 > TeV

gs Ã M N τ V0 10108 M−4
P m3/2 (TeV) mτ (TeV)

0.1 1 340 3200 10980.7 1.4 4.6 155.5
0.3 1 114 1000 3703.4 2.0 4.6 155.2
0.3 10−11 100 750 2849.7 1.6 3.8 129.6
0.3 10−27 80 470 1823.8 0.9 4.6 154.8
0.3 10−61 36 85 369.3 2.2 3.0 104.0

Ranks of the condensing gauge group are too high.
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C4 axion

EDE in LVS: C4 axion

Taking a Swiss-Cheese CY we have

K = −2 ln

(
V +

ξ̂

2

)
+

X̄X

V2/3 , (31)

W = W0 +MX + As e
−asTs +

3∑
n=1

An e
−n aTb , (32)

with as = 2π/Ns and a = 2π/Nb.

We reproduce the EDE potential with the field

φ =

√
3
2
θb
τb

, (33)

and introduced A1 = 15Ab/4, A2 = −3Ab/2 and A3 = Ab/4.
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C4 axion

EDE in LVS with C4 axion

f =

√
3
2

1
abτb

≃ 0.2
Nb

τb
for ab =

2π
Nb

, (34)

V0 =
64π3

3

(
|W0|Ab

N3
b

)(
f

MP

)2

M4
P e

−
√

3
2

MP
f . (35)

This model requires an heavy fine tuning

Nb Ns τb |W0| Ab As V0 10108 M−4
P

100 3 97.5 6.0 × 10−10 5 × 10−92 0.29 1.8
1000 4 974.6 1.1 × 10−7 2 × 10−91 0.28 1.3

Similar (fine-tuned) results for a fibrated CY.
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C2 axion

EDE in LVS: C2 axion

First model: gaugino condensation on D7-branes (Swiss-Cheese
CY)

V = τ
3/2
b −τ

3/2
s =

1
2
√

2

[(
Tb + T̄b − γ(G + Ḡ )2

)3/2 − (Ts + T̄s

)3/2]
,

with

K = −2 ln

(
V +

ξ̂

2

)
+

X̄X

V2/3 , (36)

W = WLVS +
3∑

n=1

An e
−ã(Tb+nkfG) . (37)

We reproduce the EDE potential with the field

φ =

√
6γ
τb

c . (38)
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C2 axion

EDE in LVS with C2 axion: D7 gaugino condensation

f =
1

ã|k |f

√
6γ
τb

=

√
3gs

8π2|k|f2
M
√
τb

for ã =
2π
M

, (39)

V0 =
16(2π)5|k |2f4

9g2
s M

5 |W0| Ã
(

f

MP

)4

e
− 3

4π
gsM

|k|f2

(
MP
f

)2

M4
P . (40)

Setting Ã = 1 we get

gs Ns M |W0| V = τ
3/2
b V0 10108 M−4

P As mV (TeV)
0.3 1 128 1 3.2 × 105 2.6 1.70 3.2 × 107

0.3 1/2 121 2.8 × 10−6 2.7 × 105 2.7 1.51 50
0.1 2 362 3.3 × 10−5 1.4 × 106 2.2 2.96 50

Similar results for a fibred CY.
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C2 axion

Second model: gaugino condensation on D5-branes.
One takes standard Swiss-Cheese LVS with substitution

τb → τb − γ
(
G + Ḡ

)2
+ e−ãtb/

√
gs

3∑
n=1

An Re [e−nãkfG ] , (41)

reproducing again the EDE potential with axion field

φ =

√
6γ
τb

c . (42)
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C2 axion

EDE in LVS with C2 axion: D5 gaugino condensation

f =
1
ãf

√
3gs

2|k |τb
=

1
f

√
3gs

8π2|k |
M
√
τb

, (43)

V0 =
3Ã |W0|2ã2

2g2
s V2 e

− 1
f

√
3

k̃|k|

(
MP
f

)
M4

P . (44)

Imposing the right values of f and V0 we find the necessity of an
exponentially small fine tuning of Ã.
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Conclusions

Best model:
LVS with C 2 axion from D7 gaugino condensation

Achievements
Controlled de Sitter moduli stabilization
Decoupling of non-EDE modes
Absence of fine-tuning
Explicit Calabi-Yau realization

Outlooks
Gravitational Waves from coupling with gauge5

Incorporate with Inflation and/or Dark Matter

5Z. J. Weiner, P. Adshead and J. T. Giblin„2021
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Thanks for the
attention!
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