

TECHNISCHE UNIVERSITÄT **DARMSTADT**

OVERVIEW OF ERL RESULTS

Acknowledgments:

Georg Hoffstaetter (Cornell), Hiroshi Sakai (KEK), Nikolay A. Vinokurov (BINP), Peter Williams (STFC)

CBETA

OUTLINE

cERL

OVERVIEW

ERL PRINCIPLE

4

ERL PRINCIPLE

SDALINAL

ERLS AROUND THE WORLD

ERLS AROUND THE WORLD

JLabFEL

- First and so far only ERL that operated > 1MW beam power
- Important role in whole ERL development since early 2000

NovoFEL (Recup.)

- NC multi-turn ERL, first multi-turn operation world-wide in 2008
- 3 FELs and many working stations for experiments

arXiv:2207.02095 [physics.acc-ph]; accepted for publication in JINST

JLAB FEL

Figure 2.7. IR Demo schematic layout. The photocathode injector is in the upper right. The beam is then merged with the recirculated beam and accelerated to full energy in a single cryomodule. The FEL is between two chicanes that give room for the two cavity mirrors of the resonator. The exhaust beam is transported through two Bates 180° bends and decelerated to the injection energy. It is then dumped in a high-power dump.

 \sim 2000: First successful "same-cell energy recovery" during FEL operation

Table 2.1. Design and As-built parameters for the IR Demo FEL.

arXiv:2207.02095 [physics.acc-ph]; accepted for publication in JINST

SDALINAC

NOVOSIBIRSK FOUR-ORBIT ERL WITH THREE FELS

- The Novosibirsk ERL is the first multiturn ERL in the world.
- normal-conductive 180 MHz accelerating system
- DC electron gun with the grid thermionic cathode
- three operation modes of the magnetic systems
- a rather compact (6×40 m2) design.
- The facility has been operating for users of terahertz radiation since 2004.

9

ERLS AROUND THE WORLD

ALICE

- 2003 design, 2008 first ERL run, 2016 shut down
- Various applications (medical and industrial)

cERL

- Start construction 2009, start commissioning 2013
- Many different applications, up to 1mA (cw)

CBETA

- 1-turn ERL: June 2019
- 4-turn ERL: Dec. 2019

S-DALINAC

- No "born-ERL", ERL mode since upgrade in 2015/2016
- 1-turn ERL: 2017
- 2-turn ERL: 2021

arXiv:2207.02095 [physics.acc-ph]; accepted for publication in JINST

10

ALICE

THE ALICE ENERGY RECOVERY LINAC @ DARESBURY

Accelerators and Lasers In Combined Experiments

12

OVERVIEW

RF System

Superconducting booster + linac; 9-cell cavities. 1.3 GHz, ~10 MV/m. Pulsed up to 10 Hz, 100 μS bunch trains; Cryo capacity 180W @ 2K

Beam transport system. Outward TBA arc tuned first-order isochronous, second order compensates T566 of chicane

4-dipole bunch compression chicane $R_{56} = 28$ cm

Return TBA arc decompresses and de-linearises – match to small energy spread at ER dump

PARAMETERS AND TIMING STRUCTURE

DESIGN AND FIRST ENERGY RECOVERY

- **2003: Design**
- 2008: Successful energy recovery: 20.8 MeV, ~ 10 pC; 80 pC early 2009 ER efficiency > 100% [i.e. possible to dump at less than injection energy]

The gradient demand traces from the two linac cavities (original analogue LLRF system) as pop-in dump in return path is retracted

- **10 TW, 800 nm laser produced X-rays in** head on configuration at ~30 keV
- **Image shows X-rays detected on screen** \sim 10³ per macropulse
- **Plot shows X-ray intensity as laser**timing scanned, pulse ~100 fs duration
- This was just a demonstration remember ALICE was not designed specifically with an optimized Compton interaction region and it was difficult to squeeze the beam (no cw operation, no optical enhancement cavity)

TECHNISCHE UNIVERSITÄT **DARMSTADT**

2010: ON THE WAY TO IR -FEL LASING

- **EMMA ring**: ALICE used as an injector for world's first Non -Scaling FFAG and completed many turns – not the subject of this talk
- **FEL preparation**: Cavity mirrors installed and aligned, first observation of spontaneous emission. Radiation was stored in the cavity immediately, indicating the transverse pre -alignment was reasonable. Spectrometer installed and tested. Strong coherent emission seen with dependence on cavity length …

SDALINAC

ALICE: TIMELINE - SOME FACTS

FIRST LASING: 23 OCTOBER 2010

TECHNISCHE UNIVERSITÄT **DARMSTADT**

Lasing 100-40 pC @ 16.25 MHz

The peak power ~3 MW Single pass gain ~25 %

ENERGY RECOVERY TRANSPORT WITH FEL LASING

- Chicane R₅₆ = 28 cm \rightarrow for a flat bunch on linac entrance at 6.5 MeV would need linac phase of +10°
- But need to compensate predominantly space-charge driven energy chirp in the bunch coming from injector from 0 to +5 °; hence overall off-crest phase +15 / $+16$ °
- Arc 1 nominally achromatic & isochronous at first order, sextupoles in AR1 ensure linearization of curvature $(T_{566}$ ~3m)
- Arc 2 R_{56} set to -28 cm and reintroduces curvature to ensure longitudinal match at linac re-entry

2010 – 2016: TYPICAL OPERATIONAL ERL WITH FEL LASING PARAMETERS

2011: IR-FEL ILLUMINATED NEAR-FIELD MICROSCOPY FOR OESOPHAGEAL CANCER DIAGNOSIS

- **Motivation:**
	- Oesophageal adenocarcinoma is the fastest rising incidence of cancer in the western world and survival rates are very poor
	- Oesophageal adenocarcinoma often progresses from Barrett's oesophagus: lining of the oesophagus is damaged by stomach acid and changed to a lining similar to that of the stomach.
	- The challenge is to identify patients with Barrett's oesophagus who will develop oesophageal cancer.
- **Present method of diagnosis:**
	- **Subjective**
	- Patterns difficult to interpret
	- **Biopsy may not be representative**

false positive -> patient has unnecessary surgery

false negative -> patient dies

2011: IR-FEL ILLUMINATED NEAR-FIELD MICROSCOPY FOR OESOPHAGEAL CANCER DIAGNOSIS

- Potential solution: Spectroscopy and microscopy in the IR
	- The different components of tissue have different IR spectra
	- **Traditionally the weakness has been resolution** $\sim \lambda/2 \sim 3-4$ μ m – but the features are \sim 10 nm
	- The SNOM overcomes this by working in the near field
	- A tapered optical fibre probe is placed within a fraction of a wavelength in close proximity to a sample and scanned
	- The spatial resolution is now given by the tip diameter
	- **However, there is strong reduction of the intensity due to the** aperture of the fibre
	- So the technique needs a high-intensity tune-able IR source – ALICE FEL
	- **Image cluster analysis at 3 wavelengths selected to** differentiate the components and quantify the "spreadedoutness" of DNA \rightarrow diagnosis

2016: SHUT-DOWN OF ALICE

- ALICE showed potential of ERLs, but ALICE itself had gone as far as it could in terms of accelerator physics
- **Successes**
	- **First SCRF linac operating in the UK**
	- First DC photoinjector gun in the UK
	- **First ERL in Europe**
	- **First FEL driven by energy recovery accelerator in** Europe
	- **First transmission IR-SNOM imaging**
	- ALICE was intended as a short lived test-bed and learning tool, but transcended it's original purpose and became a scientific facility in its own right

23

CERL

COMPACT ERL (CERL) IN KEK **TANAL AND** Circumference ~ 90 m Beam Dump CW laser RF frequency= 1.3 GHz Main LINAC 9-cell SC cavity x 2 (8MV/m) **Merger** Injector LINAC **Beam Energy 17.6 MeV Injector Energy** 3.0 – 5.0 MeV **E-Gun Energy** 500 keV ©Rey.Hori/KEK **Beam repetition** 1.3 GHz & 81.25 MHz 2-cell SC cavity x 3 **Average current** 1 mA CW (max) (7MV/m) Photocathode DC gun **Bunch charge 60 pC/bunch (max)** (Not SRF gun) Buncher **Operation mode** CW or Burst

500kV DC Gun (highest DC voltage in the world)

SDALINAC

HISTORY

C E R L

SDALINAC

01.08.2023

OPERATION SINCE 2019 OVERVIEW

CERL: FEL

IR-FEL

TECHNISCHE UNIVERSITÄT **DARMSTADT**

Burst mode during FEL optimization

 0.8

undulator parameter; K

 1.2

 1.4

 8 _{0.4}

 0.6

29

SDALINAC

Photonics

OPTICS TUNING OF HIGH CHARGE OPERATION

Meausment results of emittances at the exit of main linac Design (60pC/bunch): **1.74 π mm mrad (x) / 1.92 π mm mrad (y)** Measurement (60pC/bunch) : **2.87 ± 0.03 π mm mrad (x) / 1.57 ± 0.02 π mm mrad (y)**

- Good agreement between simulation and measurement including space charge effect
- **Requirements for FEL** operation satisfied

FIRST IR-FEL PRODUCTION

Commissioning of MIR FEL

 5~10 times higher light signal from U2 than that from U1 was achieved by using FEL optimization (AI methods) during stable beam

 \rightarrow FEL was produced, light intensity almost satisfied requirements

 Next target is CW ERL-SASE-FEL (for proof of concept for EUV-FEL)

Y. Honda et al. *"Construction and Commissioning of Mid-Infrared SASE FEL at cERL"* <https://doi.org/10.1063/5.0072511> is published in "Review of Scientific Instruments, (11) Vol.92

FEL monitor port #2 for the U2 light

Physik | Institut für Kernphysik | Overview ERL Results | Michaela Arnold

SDALINAC

32

SDALINAC

EL EM **S**

IRRADIATION BEAM LINE

Physik | Institut für Kernphysik | Overview ERL Results | Michaela Arnold

33

Successibility of Audit States of Containing School of the Superior Second Second

ELEM³

CDR THZ VECTOR BEAM GENERATION AND NEW BEAM LINE

FUTURE PLAN AND DEVELOPMENT

- 10-kW class EUV sources are required in the future for Next Generation Lithography (LPP is 250W) ERL-FEL is the most promising light source
- Features of EUV-FEL
	- High EUV power (> 10 kW) 10 kW SASE-EUV-FEL is produced by
		- undulator with CW short pulse
	- Low electric power consumption thanks to energy recovery

34

CBETA

LAYOUT

- Cornell-BNL Electron Test Accelerator – test facility for EIC
- Cornell DC gun, 2nC peak
- 100mA, 6MeV SRF injector (ICM), 1.3GHz
- 320mA, 6-cavity SRF CW Linac (MLC), 1.3GHz
- 4 Spreaders / Combiners with electro magnets
- **FFA cells with permanent magnets,** 3.8 energy aperture, 7 beams
- 600kW beam stop

ORBIT CORRECTION

- Measured before enery-recovery to verify orbit and linear optics of return loop
- **Algorithm using corrector to BPM response** matrix (online Bmad model)
- Single pass orbit, tuned by hand (a)
- Algorithmus applied section by section results in (b)

C. Gulliford et al., Phys. Rev. Accel. Beams 24, 010101 (2021).

37

1-TURN OPERATION

 Successful operation, including energy recovery in each cavity (June 24th, 2019)

700

600

500

400

300

200

100

C. Gulliford et al., Phys. Rev. Accel. Beams 24, 010101 (2021).

- Transmission $99.6 \pm 0.1\%$; energy recovery > 99.8%
- Measured up to 8 μA
- Each cavity accelerates beam without receiving external power for it

C. Gulliford et al., Phys. Rev. Accel. Beams 24, 010101 (2021).

4-TURN OPERATION

- 4-turn Layout
- Multi-turn energy recovery achieved on December 24, 2019
- Beam on the first viewscreen in the beam stop line

A. Bartnik et al, PRL 125, 044803 (2020).

SDALINAC

C B E T A: 4-TURN OPERATION

Note: Final 42 MeV orbit (red) has systematic error due to poor

VERTICAL ORBIT CORRECTION

- **First three passes** through FFA return loop
- **Orbit correction algorithm** was applied
- **Offset of orbits for clarity**

VERTICAL ORBIT CORRECTION

- All seven beams
- Orbit correction algorithm was applied
- **Offset of orbits for clarity**

BEAM ARRIVAL PHASES

- **Beam arrival phases at entrance and exit of** main linac cryomodule (MLC) (measurement vs simulation)
- Phases are shown relative to 1st pass
- \blacksquare Negative phase = later arrival time

BETATRON TUNES

arc sections straight section

- Energy scan measured during 1 turn run (39 - 59 MeV)
- Design energies measured during 4-turn run (42, 78, 114, 150 MeV)
- Measurements show a good agreement with the FFA model

BEAM LOSS THROUGH 7 RETURN LOOPS

- Beam losses in all 7 passes through the FFA are low.
- **Between the FFAs there are 6 passes with gradual** 10% losses
- Before the 7th FFA pass there is a 60% loss (in Recombiner-2)
- **Source of losses: many small problems in optics** settings, nonlinear stray fields, evidence of microbunching, and others (not yet been fully investigated)
- **Percentages improve with lower initial charge (not** shown)

C B E T A: 4- T U R N O P E R A T I O N

INDICATIONS OF MICRO-BUNCHING

- Measured: entrance to S2 (beginning of second pass)
- Charge dependent
- **Single bunch effect**
- **Optics dependent**

S-DALINAC

S-DALINAC SUPERCONDUCTING DARMSTADT LINEAR ACCELERATOR

- **Design (extracted beam):** 130 MeV, 20 µA
- **Design (NRF):** 10 MeV, 60 µA
- **Particles:** electrons
- **Rep. rate:** 2.9973 GHz, cw

• In operation since 1991, modified, improved and operated mainly by students (see later)

[Virtual tour](https://ikpcloud.ikp.physik.tu-darmstadt.de/index.php/s/HC4bm2QTiBN4fpw) [\(click here, bottom of page](https://www.ikp.tu-darmstadt.de/das_institut_kernphysik/index.en.jsp))

PARAMETERS SRF AND ERL

SRF injector

- \blacksquare 1x 6-cell (β=0.86) as capture
- \blacksquare 2x 20-cell (β=1)

SRF main linac

 $8x 20$ -cell $(\beta=1)$

 $f = 2.9973$ GHz

50

- 360° path length adjustment system in second recirculation \rightarrow ERL mode
- 265[°] for first recirculation
- 205[°] for third recirculation (under upgrade)
- Bunch length important for every setting

- Modification lattice 2015/2016
- Commissioning of modes followed beam time schedule

SINGLE-TURN ERL

SINGLE-TURN ERL (AUGUST 2017)

August 2017: First ERL in Germany

 $E_{\text{kin injection}} = 2.5 \text{ MeV}$

 $\Delta E_{\text{Main LINAC}} = 20 \text{ MeV}$

 $I_{initial} = 1.2 \mu A$

Modes:

- No beam: RF load of cavity without beam
- 1x acc.: One accelerated beam
- 1x ERL: One accelerated and one decelerated beam

 $t_{\text{recirculation}} = (n + 1/2) \times t_{\text{RF}} + t_{\text{offset}}$

SINGLE-TURN ERL (AUGUST 2017)

M. Arnold et al., Phys. Rev. Accel. Beams **23**, 020101 (2020).

S-DALINAC: 2-TURN ERL

TWOFOLD ERL

CHALLENGES

Concept based on: R. Koscica et al., Phys. Rev. Accel. Beams **22**, 091602 (2019)

- **Diangler** Objective functions result from
- **Splitter magnet ratio:**
- p_1 : p_F : p_S =1 : 4.73 : 8.32

Degrees of freedom: \vec{A} , $\vec{\phi}$, \vec{L} , \vec{R}_{56}

PHASE SLIPPAGE

Simplified model of energy gain More complex model of energy gain

Speed changes along the cavity

- Influences interaction with alternating electric field
	- Numerical simulations required

SOLUTION FOR LONGITUDINAL QUANTITIES

TWOFOLD ERL MODE (AUGUST 2021)

F. Schliessmann et al., Nat. Phys. **19**, 597-602 (2023).

Energy-recycling efficiency:

```
\etamain LINAC
                P_{\text{b},\text{main LINAC},2x\text{ acc}} - P_{\text{b},\text{main LINAC},2x\text{ FRL}}P_{\text{b}} main LINAC, 2x acc.
           = (84.0 \pm 1.2) \%
```


TWOFOLD ERL MODE (AUGUST 2021)

LIMITS OF TRANSVERSE TUNING

INSTRUMENTATION OF SUPERIMPOSING BEAMS

antenna

mode separator

 (Non-)destructive position measurement for both beams simultaneously

M. Dutine et al., Proc. of IPAC 2022, p. 254-256 (2022).

420 mm

- Options
	- RF beam loading
	- **Screen with hole**
	- Beam loss monitors
	- Wire scanner
	- 6 GHz cavity BPM (double of fundamental frequency)

diamete 57.4 mm

ARE: NX CAD-Designing, Version 1;

■ 3 GHz cavity BPM in combination with bunch trains

WIRE SCANNER

Measurement routine:

- (1) Measure single-accelerated beam alone
- (2) Measure both beams simultaneously
- (3) Substract (1) from (2)
- \rightarrow Gain position of single-decelerated beam
- Tuning of the first beam requires re-calibration of the system
- Measurement time: \sim 10 sec.

M. Dutine et al., Proc. of IPAC 2022, p. 254-256 (2022).

NEXT?

- Upgrade of third recirculation beamline path length system
	- \rightarrow 1-turn ERL using third beamline
	- \rightarrow 3-turn ERL 2D simulation show, that it is in principle possible

F. Schliessmann et al., Proc. of IPAC 2023, p. 2117 – 2120 (pre print 2023).

Example 2 Laser Compton backscattering in third beamline as ERL application

M. Meier et al., Proc. of IPAC 2023, p. 2113 – 2116 (pre print 2023).

See also "Future" talk

TECHNISCHE UNIVERSITÄT **DARMSTADT**

YOUR CONTRIBUTION

In operation since 1991, **modified, improved and operated mainly by students**

- Student assistants support operation
- BSc, MSc and PhD theses: Hands-on projects
- **Broad hands-on education in accelerator science:** Daily operation (beam, cryo plant, diagnostics, RF system, vacuum,…) and maintenance (alignment, work on lattice,…)
- Please contact me: marnold@ikp.tu-darmstadt.de

Ira Rischowski Scholarship for female students in international master studies

Looking for a PhD position?

- Who can apply: Female students from abroad at the end of their Bachelor studies
- Goal: Support Master studies at TU Darmstadt in the field of accelerator science, nuclear physics or nuclear astrophysics
- Scholarship of 600 ϵ /month for 24 months + 400 €/month as student assistant
- Why you should apply: Graduates of this programme will be equipped with the perfect requirements to apply for a PhD position at TU Darmstadt

For more information: [Click here](https://www.ikp.tu-darmstadt.de/lehre_kernphysik/ira_rischowski_programm/index.en.jsp)

SUMMARY

FOUR ERLS IN A NUTSHELL

ALICE

CBETA

(arb.

Den

 $0.4 \frac{2}{5}$

02

 R

 $\overline{4}$

cERL

S-DALINAC

67

 y (mm)

 -8

 -4

 Ω

 x (mm)