

Technology of Beam Driver for Plasma Accelerators

Enrica Chiadroni (Sapienza Univ. - SBAI Dept. and INFN - LNF)

DIPARTIMENTO DI SCIENZE DI BASE E Applicate per l'Ingegneria

Outline

- Particle-driven Plasma Accelerators
- Driver beam generation and optimization towards a beam-driven plasma-based user facility
 - EuPRAXIA@SPARC_LAB through the SPARC_LAB Experience
- Conclusions

Challenges of beam-driven PWFA

- Typically in plasma wakefield accelerators we have
 - gradient of several GV/m
 - strong focusing fields of several 100 kT/m
 - the matched beam size of the witness beam is small , $\sigma w \approx \mu m$
 - optical beta function of witness beam is small, e.g. $\beta \approx \mu m$
 - tolerances for emittance growth is small! (100% growth for 1σ offset)
- Energy spread <-> uniformity of the accelerating fields (in r, z)
 - Control charge and beam loading to compensate energy spread
 - Use short bunches to minimize energy spread
- Emittance preservation <-> focusing field (in r,z)
- Alignment control between wakefield driver and witness electron bunch at 1 µm level
- Stability

Beam-driven PWFA worldwide

Credits: E. Gschwendtner, 2019

Facility	Where	Drive (D) beam	Witness (W) beam	Start	End	Goal
AWAKE	CERN, Geneva, Switzerland	400 GeV protons	Externally injected electron beam (PHIN 15 MeV)	2016	2020+	 Use for future high energy e-/e+ collider. Study Self-Modulation Instability (SMI). Accelerate externally injected electrons. Demonstrate scalability of acceleration scheme.
SLAC-FACET	SLAC, Stanford, USA	20 GeV electrons and positrons	Two-bunch formed with mask (e ⁻ /e ⁺ and e ⁻ -e ⁺ bunches)	2012	Sept 2016	 Acceleration of witness bunch with high quality and efficiency Acceleration of positrons FACET II preparation, starting 2018
DESY-Zeuthen	PITZ, DESY, Zeuthen, Germany	20 MeV electron beam	No witness (W) beam, only D beam from RF-gun.	2015	~2017	- Study Self-Modulation Instability (SMI)
DESY-FLASH Forward	DESY, Hamburg, Germany	X-ray FEL type electron beam 1 GeV	D + W in FEL bunch. Or independent W-bunch (LWFA).	2016	2020+	 Application (mostly) for x-ray FEL Energy-doubling of Flash-beam energy Upgrade-stage: use 2 GeV FEL D beam
Brookhaven ATF	BNL, Brookhaven, USA	60 MeV electrons	Several bunches, D+W formed with mask.	On going		 Study quasi-nonlinear PWFA regime. Study PWFA driven by multiple bunches Visualisation with optical techniques
SPARC Lab	Frascati, Italy	150 MeV	Several bunches	On going		 Multi-purpose user facility: includes laser- and beam-driven plasma wakefield experiments

Beam-driven PWFA worldwide

Credits: E. Gschwendtner, 2019

Facility	Where	Drive (D) beam	Witness (W) beam	Start	End	Goal	
AWAKE	CERN, Geneva, Switzerland	400 GeV protons	Externally injected electron beam (PHIN 15 MeV)	2016	2020+	 Use for future high energy e-/e+ collider. Study Self-Modulation Instability (SMI). Accelerate externally injected electrons. Demonstrate scalability of acceleration scheme. 	
SLAC-FACET	SLAC, Stanford, USA	20 GeV electrons and positrons	Two-bunch formed with mask (e ⁻ /e ⁺ and e ⁻ -e ⁺ bunches)	2012	Sept 2016	 Acceleration of witness bunch with high quality and efficiency Acceleration of positrons FACET II preparation, starting 2018 	
DESY-Zeuthen	PITZ, DESY, Zeuthen, Germany	20 MeV electron beam	No witness (W) beam, only D beam from RF-gun.	2015	~2017	- Study Self-Modulation Instability (SMI)	
DESY-FLASH Forward	DESY, Hamburg, Germany	X-ray FEL type electron beam 1 GeV	D + W in FEL bunch. Or independent W-bunch (LWFA).	2016	2020+	 Application (mostly) for x-ray FEL Energy-doubling of Flash-beam energy Upgrade-stage: use 2 GeV FEL D beam 	
Brookhaven ATF	BNL, Brookhaven, USA	60 MeV electrons	Several bunches, D+W formed with mask.	On going		 Study quasi-nonlinear PWFA regime. Study PWFA driven by multiple bunches Visualisation with optical techniques 	
SPARC_LAB	Frascati, Italy	150 MeV	Several bunches	On going		 Multi-purpose user facility: includes laser- and beam-driven plasma wakefield experiments 	

High Brightness Photo-injector

- L. Serafini and M. Ferrario, Physics of, and Science with the X-Ray Free-Electron Laser, edited.by S. Chattopadhyay et al. © 2001 American Institute of Physics
- M. Ferrario et al., Phys. Rev. Lett. 104, 054801 (2010)

High Brightness Photo-injector

P. O. Shea et al., Proc. of 2001 IEEE PAC, Chicago, USA (2001) p.704.
M. Ferrario et al., Int. J. of Mod. Phys. B, 2006

Multi-bunch Shaping in a Photo-Injector

Laser Comb Technique at SPARC_LAB (INFN)

M. Ferrario et al., Int. J. of Mod. Phys. B, 2006

9

Multi-bunch Shaping in a Photo-Injector

Laser Comb Technique at SPARC_LAB (INFN)

Multi-bunch Shaping in a Photo-Injector

Laser Comb Technique at SPARC_LAB (INFN)

Ramped Bunch Train

 $pprox \lambda_p$

D3-D2 =240 (0.03) D2-D1 =270 (0.05)

	\boldsymbol{E}	$\Delta E/E$	σ_t	Q	ε_{nx}
	(MeV)	(%)	(fs)	(pC)	(mm mrad)
W	112.6	0.084	80	24	1(0.09)
D4	112.3	0.159	42	75	0.8(0.1)
D3	112.2	0.112	92	69	1.7(0.1)
D2	112.3	0.087	113	36	2.7(0.6)
D1	112.2	0.045	100	36	2.8(0.3)

Interaction with Plasma

Hybrid kinetic-fluid simulation by Architect from measured drivers parameters

Interaction with Plasma

Hybrid kinetic-fluid simulation by Architect from measured drivers parameters

Longitudinal electric field on axis and normalized bunch density profile, $\alpha = n_{\text{b}}/n_{\text{o}}$, for a ramped charge profile (ratio 1:3:5:7) in the weakly non-linear regime:

$\alpha >>1$ and $Q^{\sim} = 0.75$.

The driver bunch spacing is non-uniform, following the experimental separation,

i.e. $270 - 240 - 420 \ \mu m \ (\lambda_{P} = 330 \ \mu m)$.

The calculated transformer ratio is *R* > 3.

Multibunch Source Masking

Two-beam configuration

- Two-bunches configuration produced directly at the cathode with laser-comb technique
 - 200 pC driver followed by witness bunch (20 pC)
- Ultra-short durations (200 fs + 30 fs)
- Separation approximately equal to half plasma wavelength (~1.2 ps)

- 3 cm long 3D-printed plastic capillary, 1 mm diameter aperture
- plasma is produced by ionizing hydrogen gas, injected through two inlets, by means of a high-voltage discharge (12 kV, 300 A) at 1 Hz repetition rate

Beam Quality Preservation

Pre-chirp to compensate wakefield slope

Beam Quality Preservation

Energy spread compensation at SPARC_LAB

- 4 MeV acceleration in 3 cm plasma with 200 pC driver
 - ~ I 33 MV/m accelerating gradient
 - 2x10¹⁵ cm⁻³ plasma density
- First ever demonstration of energy spread reduction
 - Spread from 0.2% to 0.12%

Energy jitter of the witness energy is 0.5 MeV

Beam Quality Preservation

Normalised emittance measurement

First PWFA transverse normalized emittance characterization

- * Multi-shot quadrupole scan technique to measure the plasma-accelerated witness normalized emittance
 - * emittance increase from 2.7 um to 3.7 um (rms) during acceleration because of non optimized matching

Gas-filled Capillary

Discharge Stabilisation

Courtesy of A. Biagioni (INFN-LNF)

- Discharge ignition depends on the operating conditions, since the breakdown voltage depends on the molecules distribution inside the capillary (pressure and length)
- Discharge timing jitter is affected by the voltage and the gas pressure in the capillary
- To decrease the time jitter (and so the shot-to-shot instability) a laser pulse can be used to ignite the discharge

Gas-filled Capillary

Discharge Stabilisation

Courtesy of A. Biagioni (INFN-LNF)

- Plasma density
 instability reduced from
 25% to 11% at 5kV
- Instability of 5% when operating at 8 kV (evaluated from Stark measurement)

First EuPRAXIA plasma source enabling **1.1 GeV** (1.5 GV/m) in **40 cm** length capillary ($n = 10^{16}$ cm⁻³)

Courtesy of A. Biagioni (INFN-LNF)

 6 inlets of 1 mm in diameter

First SASE FEL lasing from a beam-driven PWFA

Feasibility proof at at SPARC_LAB (INFN, Frascati)

First Seeded FEL lasing from a beam-driven PWFA

Feasibility proof at SPARC_LAB (INFN, Frascati)

M. Galletti et al., Phys. Rev. Lett. 129, 234801 (2022)

First Seeded FEL lasing from a beam-driven PWFA

Feasibility proof at SPARC_LAB (INFN, Frascati)

Other Advances towards Beam Quality

Lindstrøm, Carl Andreas, et al. "Energy-spread preservation and high efficiency in a plasma-wakefield accelerator." Physical review letters 126.1 (2021): 014801.

Solving Beam Quality Issues

- Several key challenges facing plasma-based facility operation under control
 - stabilization and control of the acceleration process (R. Pompili et al., Energy spread minimization in a beamdriven plasma wakefield accelerator, Nat. Physics 17, no. 4, pp. 499-503, 2021; Ferran-Pousa et al., PRL 123, 054801, 2019)
 - energy spread mitigation, normalized emittance preservation, overall stability gain
- Improvements still needed to guarantee continuous operation
 - sub-percent to sub-per-mille energy spread and mm mrad to sub-mm mrad emittances
 - increase of the **repetition rate** from a few hertz to kilohertz (R. D Arcy et al., *Recovery time of a plasma-wakefield accelerator*, Nature **603**, pp. 58–62, 2022)
 - improvement of shot-to-shot stability

Conclusions

- Impressive progress worldwide has been done toward the operation of a FEL user facility
 - Recent demonstration of SASE FEL driven by PWFA (SPARC_LAB, INFN -Frascati), LWFA (SIOM, Shangai) and LWFA Coxinel experiment at HZDR (Dresden)
 - The success of these research efforts is predicated on the ability of the community to overcome several key challenges facing plasma-based FEL operation
 - stabilization and control of the acceleration process, which turns into energy spread mitigation, normalized emittance preservation, overall stability gain
- However, still improvements are needed in terms of
 - electron beam quality
 - sub-percent to sub-per-mille energy spread and mm mrad to sub-mm mrad emittances
 - increase of the repetition rate from a few hertz to kilohertz
 - improvement of shot-to-shot stability
- An entire community is working hard to achieve this result and the selection of EuPRAXIA, as first ever plasma accelerator project, in the ESFRI Roadmap is the validation of the quality and readiness of the work done and the technology
- The R&D now concentrates on **beam stability, staging, high repetition rate, continuous operation**, as necessary steps **towards the realization of compact plasma-based accelerator facilities**
- Plasma-based, ultra-high gradient accelerators therefore open the realistic vision of very compact accelerators for scientific, commercial and medical applications