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* Basic principle of plasma-based acceleration
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Relativistic Plasma Waves

0 ‘.‘0‘8 % o % O
e oe ©00 "o
‘. X, ..0 o ..0 .0..0.' %

Courtesy of M. Ferrario




Relativistic Plasma Waves

Surface charge density

o =endx

Courtesy of M. Ferrario




Relativistic Plasma Waves

Surface charge density Surface electric field

0 = endx Ex = —0/ep = —endx/ep

Restoring force

d25x )

m-—= —eby=—muw; dox

Plasma oscillations

Ox = (Ox]o cos (wy, t)

Plasma frequency

_ Collective behavior !!
Courtesy of M. Ferrario




Relativistic Electron Electrostatic Plasma Wave

nge? o,
W, = _% _
p JMeto Plasma angular frequency/regular frequency fo > 9N1no
. . It
* The oscillations lead to local compression | P Elroc‘:roognliletr;s y
(bunching) and rarefaction in the electron ne.i(x.OJ ' 4
density

Electron oscillations are fast, ions are
regarded as stationary

The disturbance does not propagate as a wave

Plasma oscillation is purely an electrostatic oscillation




Acceleration in Plasma Waves

 When electrons are disturbed by a suitable phase relation, their oscillations consist

of a traveling wave whose v, can range from a few times the electron thermal
velocity to infinity

* The basic equation for waves propagation in the cold plasmas is the Klein-Gordon

equation:
- = = 1[FE =
VX(VXE)+ [ +a)E]=O
c2 L o012 P
* Plane wave solution E = _’Oei(??—wt) k = wave vector
9 . .
a7 | 1 ) New Klein-
—— > qk X(lkXE)+—( @ +a))E (3§ Gordon
V=ik h c? equation

If E and k are in the same direction => longitudinal wave with @ = a)P W




Cold Wavebreaking Field

<

~300 um at no = 1016 cm?3

J J—Elmm ‘)

0

Credits: C. Joshi, UCYA

Electron bubble @

J )

W

Characteristic scale length
of the accelerating field, i.e.
the plasma wake, is the
plasma wavelength A,

3.3-1010
\/”0 [cm 3]

Aplum] &~

* The ionized plasma can sustain accelerating gradient 2-3 orders of magnitude
larger than in conventional RF-based accelerators

* Maximum accelerating field a plasma can sustain: Cold wave breaking field

EMaa: [V/m] =

MeCWp

€

~ 100+/n0[cm=3]

no = 10'° = 10'%em =3




Plasma Definition

* A partially or completely ionized gas, globally neutral, is a plasma if it exhibits
a collective behavior

* Coulomb shielding

* Dimensions >> Debye length Ap = f ATT}”
V rne=
* Plasma Oscillations
/ 2
. T 1 [ ne=
emporal response >> wp Wy = V
=

* The large electric fields a plasma can sustain are supported by collective
motion of plasma electrons, forming a space charge disturbance moving at
a speed slightly smaller than c

10




Collective Fields to Accelerate Charged Particles

First Ideas

* 1956, G | Budker and V | Veksler of the (then) USSR (Budker G | 1986 Proc. CERN Symp.
on High Energy Accelerators vol 1 (Geneva: CERN) pp 68-80)

* Use of the fields generated in a plasma by the passage of a medium-energy electron
beam to accelerate ions to high energy

* Toshi Tajima and John Dawson of UCLA (Phys. Rev. Lett. 43 267 (1979))

* Use of a relativistically propagating disturbance or a wake created in a plasma by the
passage of a short laser pulse to accelerate electrons to ultrahigh energies in a short

distance ,
# Laser Wakefield Accelerator © SRR

* Pisin Chen at al., (Phys. Rev. Lett. 54 693 (1985))

* instead of a laser pulse, one can use a high-current bunch of electrons to generate
very high electric fields in a plasma that can be used to accelerate particles extremely

rapid|
PIEY # Plasma Wakefield Accelerator b Syrt electron beam pulse
The plasmas does not only provide high acceleration A\/\/

gradients, ~GV/m, but they also serve to focus accelerated
beam to micrometer scale spot size

S

11
Credits: C. Joshi and T. Katsouleas, AIP Physics Today 2003




Basic Assumptions

* Upstream from the laser or beam driver, each fluid can be treated as at rest or cold

* For underdense plasmas, the phase velocity of the excited wakefields is roughly the
speed of light, ¢

* Compared with this speed, all the initial thermal velocities of plasma particles can be
treated as zero

* Wavelike assumption

* Fields in the wake depend on the variable ct—-z, where the phase velocity of the wave is
essentially ¢

* Quasi-static approximation

* The driver evolves on a time scale much longer than the plasma response

* the driver can be consider as non-evolving when calculating the plasma
response. Therefore, the wake depends weakly on the distance the driver has moved
into the plasma

12




Plasma States

In Nature and in Laboratory
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Plasma States

In Nature and in Laboratory
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Plasma Source
Gas-filled capillary

PH2 = 10 mbar
C N R L Total discharge duration :800 ns
| WW=— Voltage : 20 kV
;';g\:f‘eﬁ:j‘oﬁv High voltage Cacilaey Flasns Peak current : 200 A

; “ semiconductor
"'_.. . :‘l e, switch

[]
1
)
‘ ! Valve controller
]
]
1
]
]
]
1
1

Capacitor : 6 nF

Gas valve 200

——
— Q/ Hydroge 150}
ﬁﬂ 9/ generatc

Delay generator

H:-filled capillary discharge

Current (A)
o
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N
o
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Time (us)

Courtesy of A. Biagioni (INFN - LNF)
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Response of a homogeneous
plasma to a high frequency field

* Let’s consider a charge g in an oscillating electric field with a non-uniform envelope

E(7, t) = E(7, t) cos (wt) Laser Field (LWFA)

1. Slowly varying envelope approximation (SVEA): E",, (7, 1) =~ ES (17)

%) "5l . —
% 2. Non relativistic equation of motion -m,% — q [E(-F, t) + v x B(T, f'):|
< 't
§: U x B(r,t) < E(7,t) but not negligible (Il order theory)
I
3. Positionofg = “slow” drift + “fast” oscillation
T(t) = ro(t) T 071 (1)
011 (t) < 70(t) V0| < |v1] il < 40y
1\L I U0 "
! o{, ’ dt dt

18




Fast Oscillations of Electrons

* Let’s first neglect the B field and Taylor expand the E field around T0 (t)

dv dvy dvy I . T
m— =m— | m—= =q [ES(\TU) + (077 - V) %(7‘0)} cos (wt)
.-’1 e
U = LEQ(F{,) sin (wt)
mw
57, 1 _E.(7) cos (wt)




From lll Maxwell equation: /
. S 0B = 1 <]
VXxE= [V X ES(TO)] cos (wt) = — mmd B(70,1) = - V x E4(rp)| sin (wt)
d'ﬁ — P - =
The particle motion equation can be written as mo =q [E('r, t) + v x B(T, t)}
q (67, - V) E(7%) cos (wt)
i diy  di, o~ .. [—g® /- ] C
m-— =m +m— =qFE.(7y) cos (wt) + | ——= (ES T -V) E.(ry) cos (wt
57 7 pr qE(70) cos (wt) [mwz (70) (7o) (wt)

.

—q2 .
— E (1) % (V X ES('F’O)) sin (wt)2]

mw?.

—_—

qﬁl X B’(’F, t)

m % — ZT( B (7y) - V) Bu(7) cos (wt)? + By(5%) x (V x Bu(7o)) sim (wt)?]

20




Ponderomotive Force

14 —q° [ = = 7
<m”_“> = — L [(Buo) - ¥) Eu(io) + Eu(io) x (V x Eu(i))]
dt / 2mw
— _J
~—

dv dvp G° _ = ,. o
m = {m — 1 =V {E g (/'u,)“w Ponderomotive force

—(12 s’.u‘z -<(_(’]E2>-
Ponderomotive force ~V [ WINGON ] S A v
per unit volume dmw?e w2 2

/

s };mml

, V(wave intensity) , VI
Fpom[ X _(1 - _q
m m

};mml

- —~— —
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Acceleration Mechanism

+ The driver, creating the bubble, can be either a

* dense relativistic particle beam (PWFA) of sub-
ps duration and kA level peak current

» ultra-intense laser pulse (LWFA), ~1018 W /cm?,
of few 10s fs duration

ions JO 0 (9

lectron bubbl . : 1ni
— » The witness can be either self-injected or

externally injected

# Rapid acceleration of injected electrons to ultra-relativistic energies,
inside the micrometer-sized structured plasma environment

+ the trapped electron beam remains short, dense, and free of
significant space-charge driven emittance degradation

22




The Dawn of Compact Accelerators
September 2004

Monoenergetic heams of relativistic b e
electrons from intense laser-plasma
interactions

S. P. D. Mangles', C. D. Murphy', Z. Najmudin’, A. G. R. Thomas',
J

. sz, 1;-- 2,..F08t0|’2,-- “3’
o e Dream beam

g. A. Norreys’, F. S. Tsung’, R. Viskup’, B. R. Walton' & K. Krushelnick' The dawn of g mpact partigle accelerators
High-quality electron heams from a
laser wakefield accelerator using
plasma-channel guiding
C. G. R. Geddes ', Cs. Toth', J. van Tilborg', E. Esarey', C. B. Schroeder’, v v

D. Bruhwiler’, C. Nieter’, J. Cary*” & W. P. Leemans'

Offshore Protein folding
A laser-plasma accelerator A el

- = A threat to the ribosome
producing monoenergetic e
o Human ancestry
The Earth’s hum On 1alland
electron heams

Sounds of air all from one
and sea

J. Faure', Y. Glinec', A. Pukhov’, S. Kiselev’, S. Gordienko’, E. Lefebvre’,
J.-P. Rousseau’, F. Burgy' & V. Malka'

technology feature ANA interferance
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The Dawn of Compact Accelerators
September 2004

Monoenergetic heams of relativistic
electrons from intense laser-plasma
interactions

S. P. D. Mangles', C. D. Murphy', Z. Najmudin’, A. G. R. Thomas',

J. L. Collier’, A. E. Dangor’, E. J. Divall’, P. S. Foster’, J. G. Gallacher’,
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P. A.
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laser wakefield ace””
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technology feature RNA interferance
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Particle-driven Plasma Wakefield Acceleration

Single bunch

* The high-gradient wakefield is driven by an intense, high-energy charged particle
beam as it passes through the plasma.

* The space-charge of the electron bunch blows out plasma electrons which rush
back in and overshoot setting up a plasma oscillation

expels plasma
electrons and
l generates plasma

' m
for | o Pureion_ » clectron

Radius
blowout column beam

regime

r —
F = -eE,
* First demonstration of the excitation of a wakefield by a relativistic beam in the
linear regime, i.e. beam density typically less than the plasma density => J.
Rosenzweig et al., Phys. Rev. Lett. 61, 98 (1988)

* Peak acceleration gradient ~ 1.6 MeV/m, but the experiment clearly showed the
wakefield persisting for several plasma wavelengths
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Position [mm]

~

Charge Density [-e/mm] o

PWFA: Energy doubling in a meter scale

Blumenfeld, |. et al. Nature 445, 741-744 (2007)
Focusing (E))

Defocusing Decelerating (E.)

< Accelerating

Credits: P. Muggli

MD——>

electron
beam

Dispersion [mm]
-18 -16 -14 -12 -10 -8
Energy Loss Energy Gain

Scalloping of the Beam

* (Gaussian electron beam with 42 GeV, 3nC @ 10

Hz, sx = 10pm, 50 fs
* 85cm Lithium vapour source, 2.7x107"cm-3
o Accelerated electrons from 42 GeV to 85 GeV
in85 cm
----------- g e ey | o Reached accelerating gradient of 52 GeV/m
Whesngdnlb * Energy gain of the 3 km-long SLAC linac
S T e S R * Single bunch
TR ey R ey * AE/E >>1%
10735 4l0 5l0 éO 710 8l0 9‘0 100

Electron Energy [GeV] 27




Two-bunch Train PWFA

lerating i 1 .
Accelerating section ALaDyn sim., A. Marocchino
O L% .i:'_:' : 3

© © 0 ©
u"e.-e.-.e ............ Q"Q

D L)Og@
HHEO®

Electron-Driver

Electron-Witness

Bunch length of tens of fs down to fs scale

* A second, appropriately phased accelerating beam (withess

beam), containing fewer particles than the drive beam, is then
accelerated by the wake

- Bunch train (D+W) for bunch acceleration (AE/E<<1)
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PWFA: High-efficiency acceleration

Litos, M. et al. Nature 515, 92-95 (2014) Focusing (E)

Decelerating (E.)

I
() —>
electron
beam
b O [ e
[ Eocus =20-35 GeV x0.31 ~ * Injection of two beams into the plasma
3 i 200 g
E - 5 . :
x ] § * One drives the wake, driver, one
| 5 samples the wake, witness
c H 1150 3
Q' . "
B % * Beam loading is key for
: :
x 100
2 * Narrower energy spread, AE/E <<1%,
3 and high efficiency

—
N
o

- = Simulation
3 Data
- = = = Core

50

IS
o

Linear charge o
density (pC mnr?)
(4]
o

N R R R B T S S |
|

I
16 18 20 22 24

Energy, E (GeV)

o
7T




Limitation of PWFA

Energy gain

* PWFA acting as an energy transformer has the great potential to double beam
energy in a single stage

* The energy transfer from the drive bunch to the plasma is optimized by
maximizing the transformer ratio

R — |E+,ma$|
|E— max] :

. Driver Bunch v\ Eaccelerating
| Wakefield theorem* 1 . :

Symmetric drive bunch current profile in a single-
mode structure: the maximum accelerating field o
'behind the drive bunch cannot exceed 2 times the ;
'maximum decelerating field amplitude along the drive Eddheleratih
bunch » |

9

]
'
. .
“ . (nn_nn)/nu
b ,' e-number
Ao density perturbation

-2 . ‘
0 1 2 3 4
*V. V. Tsakanov, Nucl. Instrum. Methods Phys. Res., Sect. A 432, 202 (1999) o (t-z/c)/2n

30 F. Massimo et al., NIM A 740, 242-245 (2014)




Limitation of PWFA

Energy gain

The transformer ratio critically depends on the bunch shape and on the density ratio

: : Ndriver,peak
Linear regime: | a = " =104 <1
0
Gaussian
! 2.5
=
1—_/}1/\ Gaussian Rectangular Triangular
0
0 1 2 3

Rectangular

o

o

3 2 -1 0 1 2 3
5 Triangular

ITl
1
0 |
-1
-3 =2 -1 0 1 2 3

F. Massimo et al., NIM A 740, 242-245 (2014)
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Enhancing Transformer Ratio

By properly tailoring the driver bunch shape, the withess beam energy might be
more than doubled when

The maximum possible transformer ratio for a bunch with given length and total
charge corresponds to that charge distribution which causes all particles in the bunch
to see the same retarding field*

Tailoring longitudinal current profile such that all longitudinal slices lose energy at
the same rate

* Asymmetric drive bunch current profile,
l.e. triangular, double triangle, doorstep-like
distributions, or multiple ramped bunch
trains, overcome this limit

(R.Ruth et al., PA 1985; W. Lu et al.,PAC 2009)

R(pum)

5

4

3

30 b F. Massimo and A. Marocchino - Architect ] ?
1

0

0

'l i L L i ] L i
-700 -600 -500 -400 -300 -200 -100 0 100
. n.J/n
Z(um) b

*K. Bane, P. Chen, and P. B. Wilson, SLAC-PUB-3662,1985
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PWFA: High-efficiency acceleration

Litos, M. et al. Nature 515, 9295 (2014) Focusing (E)

Defocusing Acceleratin Decelerating (E)

?
+ A 5

o S 2 = —-'-.
+ + + P f * b
+ + + + +1+ ++++"_)
+ + + + +&++ ‘-.I++++ l
+ 4+ +_d= + 42 Mt ++ + + electron
- == - -_-_I!- - o o IR beam
Beam density (5.0 Accelerated Witness Bunch
-6 -5 —4 -3 - . w

Plasma density (5.0 x 10"® cm™)

* Electric field in plasma wake is loaded by
presence of trailing bunch

(,-wAD) 3
5
b

£ * Allows efficient energy extraction from the
plasma wake

(WD) g
|
m

)




Resonant PWFA

Multi-bunch shaping Wimess | " Drive

== S + Bt 2T+ { =% 1
Driver 7= OO Q—>
A _f + + +'4'.+-4.+ + + B % ~& + + } electron
Witness Az ~ -2 = z=o = _a%e -~~~ beam
2 q_Az'—»:c Az > e Az ~

* Bunch spacing depends on the plasma density
3.3-1010
\/nolem =3

2
Accelerating gradient FE, x (ﬁ) N7t 2 GV/m
Oz

Scale length of the plasma wake \p[um| ~

* Increase in energy of a trailing particle  Aymec® ~ cE+ maxLd = Rypmec®
* Preservation of witness emittance and length

* Better control of the energy spread
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From Linear Regime: nb<<no

Focusing force is sinusoidal

E-field E .
Driver Bunch accelerating
" A "‘ |
§ N A
“ ! ‘ |
Q v )\ | Witges Bulpch
’ " . ——
% X . :
] 0 s "
| " : :
s o +
. i | : l‘
! [ | I ¥ .
I ' of ) ]
| " “ - .
Ede‘celeratu'wg g :
: “:' \ : .
" ! (n_-n)/n
L | e 0"
o e-number
e density perturbation

cop(t-z/c)/ 27
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Lower wakefields
Transverse forces not linear in r

Symmetric for positive and negative
witness bunches
Well described by theory




to Quasi-Linear and Non-Linear Regime

The wake structure depends on the driver pulse «intensity»

400

200
E

0 &
'

—200

—400 , :

0 20 40 60 30 « Higher wakeflelds_ | |
¢ (um) « transverse forces linear in r (emittance

preservation)

= High charge witness acceleration
possible

- Requires more intense drivers

- Not ideal for positron acceleration
36




Quasi-non Linear Regime

* Condition for blow-out ™y

n
p
* Bubble formation w/o wavebreaking, Ap is constant
* Resonant scheme in blowout

* Linear focusing force => emittance preservation

* A measure of non-linearity is the normalised charge

" Npk3 : :
0= bp _ dmk,r, Ny » <<1 linear regime
Ny >1 blowout regime

* Using low emittance, high brightness beams

) -
Q< 1andn— > 1
* Quasi-non Linear Regime Y

n, = 10°cm™3,Q, = 200pC, 0, = 180fs, 0, = 5.5um=>ny, = 5n,andQ ~ 0.8
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High Quality Beams

/—/_:> -N of particles per pulse => 10°
-High rep. rate f.=> bunch trains

H L = Ne+Ne—fr

4m0,0,

—Small spot size => low emittance

—-Little spread in transverse momentum
and angle => low emittance

=)
2 i //__:> —-Short pulse (ps to fs)
=
NN

42




Towards the Applications

* Multi-GeV acceleration of high brightness electron beams in cm-scale plasma structures

Plasma _ » Application
Accelerating « Light Sources
Module » High Energy Physics
Focusing/ Extraction/
Injection guiding

* Injection and matching to plasma accelerating module

* The beam has to be focused to the matching spot to prevent envelope oscillations
that may cause emittance growth

* Blow-out regime

e 1 YPICal NUMbers

Xmatching = 0

= Matching condition

,Bmatching — I

|k, = “n y = 1000
| A
Y 33.1010 ng = 10*cm=3 - :Bmatching €n N
Ap(um) ~ — Omatching = ~
L \/ ny(cm=3) &n = Immmrad ! V )4
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Towards the Applications

* Extraction from plasma accelerating module

* plasma fields stronger than in conventional accelerators
| o F T _3
G(MT/m) = — =~ 3n(10" em ™)
T
* beams experience huge transverse size variation when propagating from the
plasma outer surface to the conventional focusing optics

Ty ™~ UM o, ~ mrad

* the particle transverse motion becomes extremely sensitive to energy spread

* the beam angular divergence has to be reduced and the transverse spot
size increased to limit the chromatic induced emittance degradation in
vacuum

l) i a)

| — “.

e) a) a‘, 2 . l)

> (0po507, +£7) =<y >° (050"

2 2
N o )

M. Migliorati et al., PRST AB 16, 011302 (2013)

—_— T -

- —
- ~
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Active Plasma Lenses

FHE REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 21, NUMBER § MAY, 1950

A Focusing Device for the External 350-Mev Proton Beam of the
184-Inch Cyclotron at Berkeley

W. K. H. Paxorsky AxD W. R. Baxker
Department of Physics, Rodiation Laboralory, University of California, Berkeley, California
(Received January 11, 1950)

A device has been constructed to focus the external beam of the 184-in. cyclotron at Berkeley. The device
consists of a cylindrical tube 4 ft. in length and 3 in. in diameter, which contains a longitudinal arc of nearly
uniform current density. Such a device will focus any beam of cylindrical symmetry. Owing to the large
power requirements of such a device it is applicable only to very short pulsed beams.

* Discharge current in gas-filled capillary

By(r) =22 [ J()r'dr’
rJo

Magnetic Field (B_) vs Force on electrons (F)

 .

* Cylindrical symmetry ‘D) s
. rely radial f ing effect ' F (=500 cm
pu .e.y adial focusing effec ] vanTiborg ||
* Tunability et al. PRL 115, a8ar=500 T

F =20 cm

| 184802 (2015)

N

* Focusing strength koay -7

* High focusing gradient ~ KT/m

—
T

* short focal length

Chromatic dependence |AF| /F, [%)

* weak chromaticity
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Active Plasma Lens
Measurements at SPARC LAB

Measurements
~500 -500
b Focusing gradient
-300 ~ 100 T/m -300
_ ° _-100 _ -100
€ § 8 5
> > 100 ” 100
300 300
Discharge OFF - Discharge ON (45 A) - Discharge ON (93 A)
59300 -300 -100 100 300 500 -goo -300 -100 100 300 500 -goo -300 -100 100 300 500
X (um) X (um) X (um)

Beam dynamjcs and beam -plasma simulation

-300 -300 -300
100 100 100
z £ £
3 3 3
” 100 ” 100 ” 100
300 300 300
5 50
0 -300 -100 100 300 500 %0 -300 -100 100 300 500 %0 -300 -100 100 300 500
X (um) X (um) X (um)
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Plasma lens vs conventional focusing

Single Quadrupole Magnet

Single Plasma Lens
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Extraction Beamline

EuPRAXIAQSPARC_LAB Case

Driver | Witness

Charge (pC) 200 30
Energy (GeV) 0.460 1

Energy spread (%) 16 0.73
Normalized emittance (mm mrad) 5 0.6
RMS Spot size (um) 7 1.2
RMS Duration (fs) 160 11.5
Peak current (kA) 1.2 2.6

The witness is preserved in charge
‘and quality and the driver is almost

completely removed

Witness
¢ @
Driver
PWFA stage Collimator
50 1100
40 180
E APL2 8’9‘
- | o
- 30t 160 2
g ‘a7 B
® ' c
® o
£ “©
= o
10t 120
0 1 1 2 1 L O
0.25 05 0.75 1 1.25 15
z(m)
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R. Pompili et al., Phys. Rev. AB 22, 121302 (2019)




Plasma Wigglers

Betatron radiation based radiator

Laser pulse

permanent lon channel
magnet

4 A A A 4 iron pole shoe
— “— — “— — 4
y /
X - - — — = +++++ ++++ +++++x++++H++++4+++
z = \ =~ \ —~ \
electron beam

Betatron oscillation k, =\2zr,n, Iy =k, /2y

A. Rousse et al., Phys. Rev. Lett. 93, 135005 (2004).

27y Xo ~10 0.5 05 -3 Amplitude
K= Ag ~1.33x 107"y [Cm ]xo [m] dependent

Synchrotron
X-ray beam

K can reach ~100 (Requires large offset, k x, ~1)
E[eV] = 5xI1072 v? ne[cm‘3] Xo [pum] Photon energy up to
Can reach up to 100 MeV with dense plasma.

Plasma wigglers can give magnet field equivalent B,>100 T with sub-cm wavelength

Courtesy of J. Rosenzweig S. Kiselev et al., PRL 93, 135004 (2004)
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Conclusions

* Plasma-based acceleration techniqgues have demonstrated accelerating
gradients up to 3 orders of magnitudes beyond presently used RF
technologies

* Plasma-based acceleration technigues have provided solid feasibility proofs
of FEL lasing paving the way to applications

* Successful efforts on improving beam quality

* R&D on beam stability, staging and continuous operation, as necessary
steps towards the realization of compact plasma-based accelerator facilities

* Challenges in high repetition rate

* Plasma-based, ultra-high gradient accelerators therefore open the realistic
vision of very compact accelerators for scientific, commercial and medical

applications
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