

27 July 2023 - 2 August 2023 Ettore Majorana Center (Sicily, IT)

Plasma Accelerators

Overview of different schemes

DIPARTIMENTO DI SCIENZE DI BASE E APPLICATE PER L'INGEGNERIA

Enrica Chiadroni (Sapienza Univ. - SBAI Dept. and INFN - LNF)

Outline

- Basic principle of plasma-based acceleration
	- Issues contributing to improving acceleration techniques
- Current research highlights
- Other uses for plasma in the accelerator field
	- Plasma lenses
	- Plasma wigglers/undulators
- Conclusions

Relativistic Plasma Waves

Courtesy of M. Ferrario

Relativistic Plasma Waves

Relativistic Plasma Waves

Surface electric field

$$
E_{\rm x}=-\sigma/\varepsilon_0=-e\,n\,\delta x/\varepsilon_0
$$

Restoring force
\n
$$
m \frac{d^2 \delta x}{dt^2} = e E_x = -m \omega_p^2 \delta x
$$

\nPlasma oscillations
\n $\delta x = (\delta x)_0 \cos (\omega_p t)$
\nPlasma frequency
\n $\omega_p^2 = \frac{n e^2}{\epsilon_0 m}$ Collective behavior!!

Relativistic Electron Electrostatic Plasma Wave

$$
\omega_p = \sqrt{\frac{n_0 e^2}{m_e \varepsilon_0}}
$$

Plasma angular frequency/regular frequency f_p

$$
=\frac{\omega_p}{2\pi}\approx 9\sqrt{n_0}
$$

- The oscillations lead to local compression (bunching) and rarefaction in the electron density
	- Electron oscillations are fast, ions are regarded as stationary

- The disturbance does not propagate as a wave
	- Plasma oscillation is purely an electrostatic oscillation

Acceleration in Plasma Waves

- When electrons are disturbed by a suitable phase relation, their oscillations consist \bullet of a traveling wave whose v_p can range from a few times the electron thermal velocity to infinity
- The basic equation for waves propagation in the cold plasmas is the Klein-Gordon \bullet equation:

$$
\overrightarrow{\nabla} \times (\overrightarrow{\nabla} \times \overrightarrow{E}) + \frac{1}{c^2} \left[\frac{\partial^2 \overrightarrow{E}}{\partial t^2} + \omega_p^2 \overrightarrow{E} \right] = 0
$$

Plane wave solution

 $\overrightarrow{E} = \overrightarrow{E}_0 e^{i(\overrightarrow{k} \cdot \overrightarrow{r} - \omega t)}$

 \vec{k} = wave vector

$$
\frac{\frac{\partial}{\partial t}}{\overrightarrow{v} \equiv i\overrightarrow{k}} \qquad \qquad \overrightarrow{q} \times (i\overrightarrow{k} \times \overrightarrow{E}) + \frac{1}{c^2}(-\omega^2 + \omega_p^2)\overrightarrow{E} = 0 \qquad \qquad \text{New Klein-}
$$

If E and k are in the same direction \Rightarrow longitudinal wave with

 $\omega = \omega_p$

Cold Wavebreaking Field

Characteristic scale length

of the accelerating field, i.e. the plasma wake, is the plasma wavelength **λ^p**

$$
\lambda_p[\mu m] \approx \frac{3.3 \cdot 10^{10}}{\sqrt{n_0 [cm^{-3}]}}
$$

- The **ionized plasma can sustain** accelerating gradient 2-3 orders of magnitude larger than in conventional RF-based accelerators
- Maximum accelerating field a plasma can sustain: **Cold wave breaking field**

$$
E_{Max}[V/m] = \frac{m_e c \omega_p}{e} \approx 100 \sqrt{n_0 [cm^{-3}]} \qquad \qquad n_0 = 10^{16} \div 10^{18} cm^{-3}
$$

Plasma Definition

- A partially or completely ionized gas, globally neutral, is a plasma if it exhibits a **collective behavior**
	- Coulomb shielding
		- Dimensions >> Debye length
	- Plasma Oscillations
		- Temporal response $> \infty$ _p⁻¹

$$
\lambda_D = \sqrt{\frac{kT\varepsilon_0}{ne^2}}
$$

$$
\omega_p = \sqrt{\frac{ne^2}{m \varepsilon_0}}
$$

• The large electric fields a plasma can sustain are supported by collective motion of plasma electrons, forming a **space charge disturbance** moving at a speed slightly smaller than *c*

Collective Fields to Accelerate Charged Particles

First Ideas

- 1956, G I Budker and V I Veksler of the (then) USSR (Budker G I 1986 Proc. CERN Symp. on High Energy Accelerators vol 1 (Geneva: CERN) pp 68–80)
	- Use of the fields generated in a plasma by the passage of a medium-energy electron beam to accelerate ions to high energy
- Toshi Tajima and John Dawson of UCLA (Phys. Rev. Lett. 43 267 (1979))
	- Use of a relativistically propagating disturbance or a wake created in a plasma by the passage of a short laser pulse to accelerate electrons to ultrahigh energies in a short distance Short laser pulse \mathbf{a}

Laser Wakefield Accelerator

- Pisin Chen at al., (Phys. Rev. Lett. 54 693 (1985))
	- instead of a laser pulse, one can use a high-current bunch of electrons to generate very high electric fields in a plasma that can be used to accelerate particles extremely rapidly **Plasma Wakefield Accelerator**

The plasmas does not only provide high acceleration gradients, ~GV/m, but they also serve to focus accelerated beam to micrometer scale spot size

Basic Assumptions

- Upstream from the laser or beam driver, each fluid can be treated as at rest or cold
- For **underdense plasmas**, the phase velocity of the excited wakefields is roughly the speed of light, *c*
	- Compared with this speed, all the initial thermal velocities of plasma particles can be treated as zero
- Wavelike assumption
	- Fields in the wake depend on the variable *ct−z*, where the phase velocity of the wave is essentially *c*
- Quasi-static approximation
	- The driver evolves on a time scale much longer than the plasma response
		- **the driver can be consider as non-evolving when calculating the plasma response**. Therefore, the wake depends weakly on the distance the driver has moved into the plasma

Plasma States

In Nature and in Laboratory

Plasma States

In Nature and in Laboratory

Plasma Source

Gas-filled capillary

Response of a homogeneous plasma to a high frequency field

• Let's consider a charge *q* in an oscillating electric field with a non-uniform envelope

 $\vec{E}(\vec{r},t) = \vec{E}_s(\vec{r},t)\cos{(\omega t)}$ Laser Field (LWFA)

- 1. Slowly varying envelope approximation (**SVEA**):
- **2. Non relativistic** equation of motion

$$
\vec{v} \times \vec{B}(\vec{r},t) \ll \vec{E}(\vec{r},t)
$$

but not negligible (**II order theory**)

 $\vec{E}_s(\vec{r},t) \approx \vec{E}_s(\vec{r})$

 $m\frac{d\vec{v}}{dt} = q\left[\vec{E}(\vec{r},t) + \vec{v} \times \vec{B}(\vec{r},t)\right]$

3. Position of q = "slow" drift + "fast" oscillation

$$
\vec{r}(t) = \vec{r}_0(t) + \vec{r}_1(t) \ll \vec{r}_0(t) \qquad |\vec{v}_0| \ll |\vec{v}_1|
$$

$$
\left| \frac{d\vec{v}_0}{dt} \right| \ll \left| \frac{d\vec{v}_1}{dt} \right|
$$

 δ

Fast Oscillations of Electrons

 $\vec{r}_0(t)$ • Let's first neglect the **B** field and Taylor expand the **E** field around

 $m\frac{d\vec{v}}{dt} = m\frac{d\vec{v}_0}{dt} + m\frac{d\vec{v}_1}{dt} = q\left[\vec{E}_s(\vec{r}_0) + (\delta\vec{r}_1 \cdot \nabla)\vec{E}_s(\vec{r}_0)\right]\cos{(\omega t)}$ $\text{Hyp.} \quad \text{III} \quad \longrightarrow \quad m \frac{d\vec{v}_1}{dt} \approx q \vec{E}_s(\vec{r}_0) \cos(\omega t)$ $\vec{v}_1 = \frac{q}{m\omega}\vec{E}_s(\vec{r}_0)\sin{(\omega t)}$ $\delta \vec{r}_1 = -\frac{q}{mc^2} \vec{E}_s(\vec{r}_0) \cos{(\omega t)}$

From III Maxwell equation:
\n
$$
\nabla \times \vec{E} = \left[\nabla \times \vec{E}_s(\vec{r}_0) \right] \cos (\omega t) = -\frac{\partial \vec{B}}{\partial t} \qquad \vec{B}(\vec{r}_0, t) = -\frac{1}{\omega} \left[\nabla \times \vec{E}_s(\vec{r}_0) \right] \sin (\omega t)
$$
\nThe particle motion equation can be written as
\n
$$
m \frac{d\vec{v}}{dt} = q \left[\vec{E}(\vec{r}, t) + \vec{v} \times \vec{B}(\vec{r}, t) \right]
$$
\n
$$
m \frac{d\vec{v}}{dt} = m \frac{d\vec{v}_0}{dt} + m \frac{d\vec{v}_1}{dt} = q \vec{E}_s(\vec{r}_0) \cos (\omega t) + \left[\frac{-q^2}{m\omega^2} \left(\vec{E}_s(\vec{r}_0) \cdot \nabla \right) \vec{E}_s(\vec{r}_0) \cos (\omega t) \right]
$$
\n
$$
- \frac{-q^2}{m\omega^2} \vec{E}_s(\vec{r}_0) \times \left(\nabla \times \vec{E}_s(\vec{r}_0) \right) \sin (\omega t)^2 \right]
$$
\n
$$
m \frac{d\vec{v}_0}{dt} = \frac{-q^2}{m\omega^2} \left[\left(\vec{E}_s(\vec{r}_0) \cdot \nabla \right) \vec{E}_s(\vec{r}_0) \cos (\omega t)^2 + \vec{E}_s(\vec{r}_0) \times \left(\nabla \times \vec{E}_s(\vec{r}_0) \right) \sin (\omega t)^2 \right]
$$

Ponderomotive Force

\n
$$
\left\langle m \frac{d\vec{v}_0}{dt} \right\rangle_T = \frac{-q^2}{2m\omega^2} \left[\left(\vec{E}_s(\vec{r}_0) \cdot \nabla \right) \vec{E}_s(\vec{r}_0) + \vec{E}_s(\vec{r}_0) \times \left(\nabla \times \vec{E}_s(\vec{r}_0) \right) \right]
$$
\n
$$
\frac{1}{2} \nabla \left[E_s(\vec{r}_0)^2 \right]
$$
\n
$$
\left\langle m \frac{d\vec{v}}{dt} \right\rangle_T = \left\langle m \frac{d\vec{v}_0}{dt} \right\rangle_T = \frac{-q^2}{4m\omega^2} \nabla \left[\vec{E}_s(\vec{r}_0)^2 \right]
$$
\nPonderomotive force

\nPonderomotive force

\n
$$
n \frac{-q^2}{4m\omega^2 \epsilon_0} \nabla \left[\epsilon_0 E_s(\vec{r}_0)^2 \right] = -\frac{\omega_p^2}{\omega^2} \nabla \left[\frac{\langle \epsilon_0 E^2 \rangle}{2} \right]
$$
\nFrom $\alpha \propto -q^2 \frac{\nabla(\text{wave intensity})}{m} = -q^2 \frac{\nabla I}{m}$

\nProof

\n
$$
F_{\text{pond}} \propto -q^2 \frac{\nabla(\text{wave intensity})}{m} = -q^2 \frac{\nabla I}{m}
$$
\n
$$
F_{\text{pond}} \propto \frac{\nabla I}{\nabla I}
$$

Acceleration Mechanism

- The driver, creating the bubble, can be either a $\frac{d^2\phi}{dt^2}$
	- dense relativistic particle beam (PWFA) of subps duration and kA level peak current
	- ultra-intense laser pulse (LWFA), \sim 10¹⁸ W/cm², $\sigma_{\rm g}^{\rm b}$ of few 10s fs duration
- The witness can be either self-injected or $\frac{1}{2}$ externally injected
- Rapid acceleration of injected electrons to ultra-relativistic energies, inside the micrometer-sized structured plasma environment
	- * the trapped electron beam remains short, dense, and free of significant space-charge driven emittance degradation

The Dawn of Compact Accelerators

September 2004

Monoenergetic beams of relativistic electrons from intense laser-plasma **interactions**

S. P. D. Mangles¹, C. D. Murphy^{1,2}, Z. Najmudin¹, A. G. R. Thomas¹, J. L. Collier², A. E. Dangor¹, E. J. Divall², P. S. Foster², J. G. Gallacher³, C. J. Hooker², D. A. Jaroszynski³, A. J. Langley², W. B. Mori⁴, **P. A. Norreys², F. S. Tsung⁴, R. Viskup³, B. R. Walton¹ & K. Krushelnick¹**

High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding

C. G. R. Geddes^{1,2}, Cs. Toth¹, J. van Tilborg^{1,3}, E. Esarey¹, C. B. Schroeder¹, D. Bruhwiler⁴, C. Nieter⁴, J. Cary^{4,5} & W. P. Leemans¹

A laser-plasma accelerator producing monoenergetic electron beams

J. Faure¹, Y. Glinec¹, A. Pukhov², S. Kiselev², S. Gordienko², E. Lefebvre³, **J.-P. Rousseau¹, F. Burgy¹ & V. Malka¹**

30 September 2004 International weekly journal of science naure

Dream beam

The dawn of compact particle accelerators

Offshore tuna ranches A threat to US waters?

The Earth's hum Sounds of air and sea

technology feature RNA interference

Protein folding Escape from the ribosome

Human ancestry One from all and all from one

The Dawn of Compact Accelerators

Acceleration

September 2004

**Monoenergetic beams of relativistic
electrons from intense laser-plasma
interactions
interactions**
 $\begin{array}{l}\n\text{S.} \text{P. D. Mampb}^{\text{S.}}\n\end{array}$
 $\begin{array}{l}\n\text{S. A. J. K. D. M. D.} \text{A. J. K. D.} \text{A. J. L. D.} \text{A. J. L. D.} \end{array}$
 $\begin{array}{l}\$ **interactions**

C. G. R. Geddes 1,2 , (D. Bruhwiler⁴, C. N.

dsma accelerator producing monoenergetic electron beams

J. Faure¹, Y. Glinec¹, A. Pukhov², S. Kiselev², S. Gordienko², E. Lefebvre³, **J.-P. Rousseau¹, F. Burgy¹ & V. Malka¹**

Offshore tuna ranches A threat to US waters?

30 September 2004

The Earth's hum Sounds of air and sea

technology feature RNA interference

Protein folding Escape from the ribosome

ekly journal of science

Human ancestry One from all and all from one

Particle-driven Plasma Wakefield Acceleration

Single bunch

- The high-gradient wakefield is driven by an intense, high-energy charged particle beam as it passes through the plasma.
- The space-charge of the electron bunch blows out plasma electrons which rush back in and overshoot setting up a plasma oscillation

- First demonstration of the excitation of a wakefield by a relativistic beam in the linear regime, i.e. beam density typically less than the plasma density => J. Rosenzweig et al., Phys. Rev. Lett. 61, 98 (**1988**)
- Peak acceleration gradient ~ 1.6 MeV/m, but the experiment clearly showed the wakefield persisting for several plasma wavelengths

PWFA: Energy doubling in a meter scale

- Gaussian electron beam with 42 GeV, 3nC @ 10 Hz, $sx = 10 \mu m$, 50 fs
- 85cm Lithium vapour source, 2.7x10¹⁷cm⁻³
	- Accelerated electrons **from 42 GeV to 85 GeV in 85 cm**

Reached **accelerating gradient of 52 GeV/m**

- Energy gain of the 3 km-long SLAC linac
- **Single bunch**
	- **∆E/E** >> 1%

Two-bunch Train PWFA

- Bunch length of tens of fs down to **fs scale**
	- A second, appropriately phased accelerating beam (**witness beam**), containing fewer particles than the **drive beam**, is then accelerated by the wake
		- Bunch train (D+W) for bunch acceleration (**∆E/E<<1**) \triangleright

PWFA: High-efficiency acceleration

Limitation of PWFA

Energy gain

- **PWFA** acting as an **energy transformer** has the great potential to double beam energy in a single stage
- The energy transfer from the drive bunch to the plasma is optimized by maximizing the transformer ratio

$$
R=\frac{|E_{+,max}|}{|E_{-,max}|}
$$

Wakefield theorem*

Symmetric drive bunch current profile in a singlemode structure: the maximum accelerating field behind the drive bunch cannot exceed 2 times the maximum decelerating field amplitude along the drive bunch

*V. V. Tsakanov, Nucl. Instrum. Methods Phys. Res., Sect. A 432, 202 (1999)

F. Massimo et al., NIM A 740, 242-245 (2014)

Limitation of PWFA

Energy gain

The transformer ratio critically depends on the bunch shape and on the density ratio

Enhancing Transformer Ratio

• By properly **tailoring the driver bunch shape**, the witness beam energy might be more than doubled when

The maximum possible transformer ratio for a bunch with given length and total *charge corresponds to that charge distribution which causes all particles in the bunch to see the same retarding field**

- Tailoring longitudinal current profile such that all longitudinal slices lose energy at the same rate
	- **Asymmetric drive bunch current profile**, i.e. triangular, double triangle, doorstep-like distributions, or **multiple ramped bunch trains**, overcome this limit (R.Ruth et al., PA 1985; W. Lu et al.,PAC 2009)

*K. Bane, P. Chen, and P. B. Wilson, *SLAC-PUB-3662*,1985

PWFA: High-efficiency acceleration

Resonant PWFA

Multi-bunch shaping

Driver $\Delta z = \lambda_p$ Witness $\Delta z' \approx \frac{\lambda_p}{2}$

• Bunch spacing depends on the plasma density

Scale length of the plasma wake

\n
$$
\lambda_p[\mu m] \approx \frac{3.3 \cdot 10^{10}}{\sqrt{n_0 [cm^{-3}]}}
$$
\n**Acceleration gradient**

\n
$$
E_z \propto \left(\frac{N}{\sigma_z}\right)^2 N_T \ge G V/m
$$
\nIncrease in energy of a trailing particle

\n
$$
\Delta p_{\text{mec}^2 \sim eE + \text{maxLd} = R \gamma \text{bmec}^2}
$$

- Preservation of witness emittance and length
- Better control of the energy spread

From Linear Regime: nb<<no

Focusing force is sinusoidal

- Lower wakefields
- Transverse forces not linear in *r* \overline{a}
- Symmetric for positive and negative \blacksquare witness bunches
- Well described by theory \blacksquare

to Quasi-Linear and Non-Linear Regime

The wake structure depends on the driver pulse «intensity»

- Higher wakefields \blacksquare
- transverse forces linear in r (emittance preservation)
- High charge witness acceleration possible
- Requires more intense drivers \overline{a}
- Not ideal for positron acceleration \Box

Quasi-non Linear Regime

- Condition for blow-out
- n_b n_{n} > 1
- Bubble formation w/o wavebreaking, λ_p is constant
	- Resonant scheme in blowout
- Linear focusing force => emittance preservation
- A measure of non-linearity is the normalised charge

$$
\tilde{Q} \equiv \frac{N_b k_p^3}{n_p} = 4\pi k_p r_e N_b
$$

<<1 linear regime >1 blowout regime

• Using low emittance, high brightness beams

$$
Q < 1 \text{ and } \frac{n_b}{n_p} > 1
$$

• **Quasi-non Linear Regime**

$$
n_p = 10^{16} \text{cm}^{-3}
$$
, $Q_b = 200 \text{pC}$, $\sigma_t = 180 \text{fs}$, $\sigma_x = 5.5 \text{µm} = \text{Sn}_b \approx 5 \text{n}_p$ and $\mathbf{Q} \approx \mathbf{0.8}$

Towards the Applications

- Extraction from plasma accelerating module
	- plasma fields stronger than in conventional accelerators

$$
G(MT/m) = \frac{F_r}{ecr} \approx 3n(10^{17} \text{ cm}^{-3})
$$

• beams experience huge transverse size variation when propagating from the plasma outer surface to the conventional focusing optics

$$
\sigma_x \sim \mu m \qquad \qquad \sigma_{x'} \sim mrad
$$

- the particle transverse motion becomes extremely sensitive to energy spread
	- the beam angular divergence has to be reduced and the transverse spot size increased to limit the chromatic induced emittance degradation in vacuum

$$
\varepsilon_n^2 = <\gamma>^2(\sigma_E^2\sigma_x^2\sigma_{x'}^2+\varepsilon^2)\approx <\gamma>^2(\sigma_E^2\sigma_{x'}^4s^2+\varepsilon^2)
$$

M. Migliorati et al., PRST AB 16, 011302 (2013)

Active Plasma Lenses

THE REVIEW OF SCIENTIFIC INSTRUMENTS

VOLUME 21, NUMBER 5

MAY, 1950

A Focusing Device for the External 350-Mev Proton Beam of the

184-Inch Cyclotron at Berkeley

W. K. H. PANOFSKY AND W. R. BAKER Department of Physics, Radiation Laboratory, University of California, Berkeley, California (Received January 11, 1950)

A device has been constructed to focus the external beam of the 184-in. cyclotron at Berkeley. The device consists of a cylindrical tube 4 ft. in length and 3 in. in diameter, which contains a longitudinal arc of nearly uniform current density. Such a device will focus any beam of cylindrical symmetry. Owing to the large power requirements of such a device it is applicable only to very short pulsed beams.

• Discharge current in gas-filled capillary

$$
B_{\phi}(r) = \frac{\mu_0}{r} \int_0^r J(r')r' dr'
$$

- Cylindrical symmetry
	- purely radial focusing effect
- **Tunability**
- Focusing strength *k*∝*γ -1*
- High focusing gradient $\sim kT/m$
	- short focal length
	- weak chromaticity

Active Plasma Lens

Measurements at SPARC_LAB

Plasma lens vs conventional focusing

Single Quadrupole Magnet

Single Plasma Lens

Extraction Beamline

EuPRAXIA@SPARC_LAB Case

The witness is preserved in charge and quality and the driver is almost completely removed

Plasma Wigglers

Betatron radiation based radiator

Can reach up to 100 MeV with dense plasma.

Plasma wigglers can give magnet field equivalent B_u >100 T with sub-cm wavelength

Conclusions

- Plasma-based acceleration techniques have demonstrated accelerating gradients up to 3 orders of magnitudes beyond presently used RF technologies
- Plasma-based acceleration techniques have provided solid feasibility proofs of FEL lasing paving the way to applications
- Successful efforts on improving beam quality
- R&D on **beam stability, staging and continuous operation**, as necessary steps towards the realization of compact plasma-based accelerator facilities
	- Challenges in high repetition rate
- Plasma-based, ultra-high gradient accelerators therefore open the realistic vision of very compact accelerators for scientific, commercial and medical applications