Muon Beam Generation and Fast Cooling

C. T. Rogers Rutherford Appleton Laboratory With thanks to International Muon Collider Collaboration and Muon Accelerator Programme

llaboration

Muon Collider

- MW-class proton driver \rightarrow target
- Pions produced; decay to muons
- Muon capture and cooling
- Acceleration to TeV & Collisions
- Designed for high energy while maximising luminosity

2

1) Luminosity increases with the square of muon energy/power

- Number of collisions per bunch increases as muon lifetime increases
- Beam size decreases as energy increases (geometric emittance)
- 2) High field, low circumference collider ring \rightarrow more luminosity
 - Shorter path length, more collisions before muon decay
- 3) Low repetition rate, few bunches is best
 - Assume that the bottleneck is in the number of protons
 - Fewer collisions, but each collision is more intense
- 4) High quality muon source is essential
 - Low emittance, good capture efficiency
- 5) Good efficiency acceleration is essential
 - High voltage systems
- The whole muon collider is designed to maximise luminosity!

The Facility – From protons to muons

Artificial Muons

- Muons produced by putting protons onto target
- Pions come out
- Pions decay radioactively to muons
- Enables an intense muon source

Technology Facilities Council

ISIS Neutron and Muon Source

5

Proton Source

MInternational UON Collider Collaboration

- Ion source: spark across H gas to make H⁻ ions
- 2) Accelerate and focus in Radiofrequency Quadrupole
- Chop into pulsed beam using fast/slow kicker
- 4) Accelerate in linac
- Inject into a ring through a foil
- Accelerate some more (maybe)
- Compress the proton bunch to very short length
- Extract and bring onto a target

Charge Exchange Injection

• High current \rightarrow accumulate beam over many turns

- Charge exchange injection of H⁻ ions through a thin foil
- Foil removes electrons
- Issues: Scattering and energy loss of protons in foil
- Painting of beam into synchtron acceptance using fast "bumper" magnets
 - Move recirculating/injected beam phase space
- Foil lifetime is critical limit
- Space charge at injection is critical limit

Bunch Compression

- Aim is to rotate the beam in longitudinal phase space
 - Short proton bunch \rightarrow short muon bunch
 - Reduce longitudinal emittance of the muons
- Achieve bunch compression by rotation in the RF bucket
- Limitations:
 - Space charge \rightarrow higher energy

ISIS Neutron and Muon Source International

ollaboration

MC Target

NInternational UON Collider Collaboration

- Protons on target \rightarrow pions \rightarrow muons
 - Heavily shielded, very high field solenoid captures π^+ and π^-
- Challenge: Energy deposition on solenoid
- Challenge: Solid target lifetime

Radiation issues (magnet)

International UON Collider

Collaboration

- Radiation load significant issue
 - Degrades insulation/glue
 - Requires more cooling
 - 1 kW heat → O(200) kW electricity
- Shield at room temperature
- Magnet at superconducting temperature
 - HTS → warmer, more efficient

Neutrino factory, Bogomilov et al, PRSTAB 17 (2014)

Radiation issues (target)

- Radiation on target can make an issue
 - Instantaneous shock
 - Long term radiation damage
- Liquid metal targets (Pb)
 - Cavitation issues
 - Specific issues around Hg
- Flowing/moving solid targets
 - Geometry issues
 - Target wheels e.g. PSI
 - Fluidised powder

		Parameter	CNGS	Muon Colider 1.5MW
		Proton fluence [p+/cm ²]	5.77E+22	1.70E+21
		PoT	1.27E+20	1.32E+21
KK 🖊	Science and Technology Facilities Co	Beam size [mm]	0.53	5
		Extractions	5.29E+06	5.51E+07
ISIS Neutron and Muon Source		Integrated Op time [days]	183	128
		DPA	1.5	

Muon front end

- Muon front-end to capture muon beam
- Solenoid taper
- Solenoid chicane removes high momentum particles
- Beryllium plug removes low momentum impurities
- Longitudinal capture system
 - Adiabatically bunch beam
 - Phase rotate

ISIS Neutron and Muon Source MInternational UON Collider Collaboration

Chicane/proton absorber

- Solenoid chicane
 - No dipoles!
 - Vertical dispersion → low pass filter
 - Excellent transport properties within acceptance
- Beryllium plug
 - Protons stop more quickly than muons/pions
 - Removes low momentum protons

Science and Technology Facilities Council

Buncher/Phase Rotator

- Drift to develop energy-time relation
- Buncher adiabatically ramp RF voltages
- Phase rotator → misphase RF
 - High energy bunches decelerated
 - Low energy bunches accelerated

MInternational UON Collider Collaboration

Luminosity consideration

- Proton beam power ~ 1-2 MW \rightarrow (FNAL, JPARC, SNS)
- Approx 0.1 $\mu^{+/-}$ per 8 GeV proton \rightarrow O(1e14) muons per MW
- BUT: muon front end produces multiple bunches (about 20)
- Rep rate is between 60 Hz (SNS) and 0.1 Hz (JPARC)
- Emittance is huge

The Facility – Ionisation Cooling International UON Collider Collaboration Muon Collider Acceleration **Collider Ring** Front End Cooling **Proton Driver** ECOM **Higgs Factory** Accumulator Charge Separato Compressor Decay Channel Initial Cooling Buncher Phase Rotator **MW-Class Target** Final Cooling to Capture Sol 6D Cooling **5D** Cooling ~10 TeV Bunch Merge Accelerators: inac, RLA or FFAG, RCS

Ionisation Cooling - intro

NInternational UON Collider Collaboration

- Muon front end produces huge flux of muons
- Muons have too large emittance at the source
- How can we reduce beam emittance? COOLING!
 - Laser cooling
 - Stochastic cooling
 - Electron cooling
 - Too slow
- Ionisation cooling (and Frictional cooling)

- Beam loses energy in absorbing material
 - Absorber removes momentum in all directions
 - RF cavity replaces momentum only in longitudinal direction
 - End up with beam that is more straight
- Multiple Coulomb scattering from nucleus ruins the effect
 - Mitigate with tight focussing
 - Mitigate with low-Z materials
 - Equilibrium emittance where MCS completely cancels the cooling

Science and Technology Facilities Council

Beam emittance in 4D

- Normalised RMS beam emittance in 2D
 - area of ellipse aligned with beam

$$\varepsilon_{2d} = \frac{1}{m} \sqrt{\sigma^2(x)\sigma^2(p_x) - \sigma^2(x, p_x)}$$

- $\sigma^2(u_i)$ and $\sigma^2(u_i, u_j)$ are variance and covariance
 - Also written as $\langle u_i u_j \rangle$
- Can be written as

$$\varepsilon_{2d} = \frac{1}{m} \sqrt{|\mathbf{V}_{2d}|}$$

In higher dimensions the definition generalises

$$\varepsilon_{2nd} = \frac{1}{m_{\mu}} \sqrt[n]{|\mathbf{V}|}$$

Transverse cooling (1)

NINTERNATIONAL UON Collider Collaboration

- Say we pass through some material at a focus
 - P decreases due to ionisation
 - Multiple Coulomb Scattering increases angular spread
- For a cylindrically symmetric beam with angular divergence Θ_x

$$\sqrt{|\mathbf{V}_{\perp}|} = (\langle x^2 \rangle \langle p_x^2 \rangle - \langle xp_x \rangle^2 - \langle xp_y \rangle^2)$$

$$\approx p_z^2(\langle x^2 \rangle \langle \Theta_x^2 \rangle - \langle x\Theta_x \rangle^2 - \langle x\Theta_y \rangle^2)$$

The change in emittance is given by

$$\frac{d\epsilon_n}{dz} = \frac{1}{2m^2\epsilon_n} \frac{d\sqrt{|\mathbf{V}_\perp|}}{dz}$$

$$\varepsilon_{2nd} = \frac{1}{m_{\mu}} \sqrt[n]{|\mathbf{V}|}$$

Science and Technology Facilities Council

Transverse cooling (2)

NInternational UON Collider Collaboration

$$\frac{d\epsilon_n}{dz} = \frac{1}{2m^2\epsilon_n} \frac{d\sqrt{|\mathbf{V}_\perp|}}{dz}$$

• Only p_z and $\langle \Theta_i^2 \rangle$ change; applying product rule $\frac{d\epsilon_n}{dz} \approx \frac{1}{2m^2\epsilon_n} \left(2\frac{dp_z}{dz}\frac{\sqrt{|\mathbf{V}_{\perp}|}}{p_z} + \langle x^2 \rangle p_z^2 \frac{d\langle \Theta_x^2 \rangle}{dz}\right)$

- Use (from $E^2 + p^2 = m^2$) $E dE/dz \approx p_z dp_z/dz$
- Use standard formula $\beta_{\perp} = \frac{< x^2 > p}{m\epsilon_n}$
- Use scattering (from atomic physics) $\frac{d < \Theta_x^2 >}{dz} \approx \frac{13.6^2}{(p\beta_{rel})^2 L_B}$.

• Gives $\frac{d\epsilon_n}{dz} \approx \frac{1}{\beta_{rel}^2 E} \left\langle \frac{dE}{dz} \right\rangle \epsilon_n + \frac{1}{2m^2\epsilon_n} < x^2 > \frac{13.6^2}{(\beta_{rel})^2 L_R}.$

 There exists an equilibrium emittance where the two terms balance (no emittance change)

$$\epsilon_n(equilibrium) = \frac{1}{2m} \frac{13.6^2}{L_R} \frac{\beta_\perp}{\beta_{rel} < \frac{dE}{dz} > 1}$$

- In longitudinal phase space, the beam is usually heated
 - Heating due to random noise in the energy loss l.e. "straggling"
 - Heating due to curvature in energy loss (heating or weak cooling)

$$\frac{d < E^2 >}{dz} = \left(2\frac{d}{dE}\frac{dE}{dz}\right) < E^2 > + \left(\frac{d < E^2 >}{dz}\right)_{Vlasov}$$

- Mitigate using emittance exchange
 - Move emittance from longitudinal to transverse phase space

Emittance exchange

International **UON** Collider Collaboration

- Initial beam is narrow with some momentum spread
 - Low transverse emittance and high longitudinal emittance
- Beam follows curved trajectory in dipole
 - Higher momentum particles have higher radius trajectory
 - Beam leaves dipole wider with energy-position correlation
- Beam goes through wedge shaped absorber
 - Beam leaves wider without energy-position correlation
 - High transverse emittance and information of the stand of

Facilities Council

Emittance exchange

International UON Collider

Collaboration

Longitudinal emittance change becomes

Transverse emittance change becomes

$$\begin{split} \frac{d\epsilon_n}{dz} \approx \frac{1}{\beta_{rel}^2 E} \left\langle \frac{dE}{dz} \right\rangle \epsilon_n + \frac{1}{2m^2\epsilon_n} < x^2 > \frac{13.6^2}{(\beta_{rel})^2 L_R}.\\ \frac{1}{\beta^2 E} \frac{dE}{ds} \left(1 - \frac{\eta \rho'}{\rho_0} \right) \epsilon_{\rm N}^{\text{'gy}} \end{split}$$

Hadron therapy application

NInternational UON Collider Collaboration

nature physics

Article

https://doi.org/10.1038/s41567-023-02115-2

Demonstration of momentum cooling to enhance the potential of cancer treatment with proton therapy

Received: 23 August 2022	Vivek Maradia ^{1,2} , David Meer ¹ , Rudolf Dölling ¹ , Damien C. Weber ^{1,3,4} , Antony J. Lomax ^{1,2} & Serena Psoroulas ¹	
Accepted: 26 May 2023		
Published online: 03 July 2023		
Check for updates	rates in proton therapy to effectively utilize motion mitigation strategies	
	and potentially increase the sparing of healthy tissue through the so-called ELASH effect. However, in cyclotron-based proton therapy facilities, it	

Muon Cooling R&D

Non Collider Collaboration

C. T. Rogers Rutherford Appleton Laboratory

Muon Accelerator R&D

- **MERIT**
 - Demonstrated principles of muon accelerator proton targetry/pion production
- EMMA
 - Demonstrated fast acceleration in FFAGs
- MUCOOL
 - Cavity R&D for ionisation cooling
 - Demonstrated operation of cavities at high voltage in magnetic field
 - Breakdown suppression using high pressure gas
 - Careful RF coupler design and cleaning in vacuum
- MICE
 - Ionisation cooling demonstration

Technology **Facilities Council**

ISIS Neutron and Muon Source

JON Collider

Muon Ionisation Cooling Experiment (MICE)

Muon Source

International UON Collider

Experimental set up

NInternational UON Collider Collaboration

Science and Technology Facilities Council

Superconducting Magnets

International **UON** Collider Collaboration

- Spectrometer solenoids upstream and downstream
 - 400 mm diameter bore, 5 coil assembly
 - Provide uniform 2-4 T solenoid field for detector systems
 - Match coils enable choice of beam focus
- Focus coil module provides final focus on absorber
 - Dual coil assembly possible to find por polarity **Facilities** Council

Absorber

International UON Collider Collaboration

- 65 mm thick lithium hydride absorber
- 350 mm thick liquid hydrogen absorber
 - Contained in two pairs of 150-180 micron thick Al windows
- 45° polythene wedge absorber for longitudinal emittance studies

Phase space reconstruction

MICE individually

a beam ensemble

properties with

Can measure beam

Phase space reconstruction

x

 σ_{xx}^2

🛯 🛋 International

- MICE individually measures every particle
- Accumulate particles into a beam ensemble
- Can measure beam properties with unprecedented precision
- E.g. coupling of x-y from solenoid fields

 σ_{yy}^2

Amplitude reconstruction

NINTERNATIONAL UON Collider Collaboration

p_x [MeV/c] 160 15000 40 140 120 20 100 10000 80 60 -205000 40 20 -4050 100 20 40 60 -100-500 0

amplitude [mm]

- Normalise phase space to RMS beam ellipse
 - Clean up tails
- Amplitude is distance of muon from beam core
 - Conserved quantity in normal accelerators
- Ionization cooling reduces transverse momentum spread
 - Reduces amplitude
 - Mean amplitude ~ "RMS emittance"

Science and Technology Facilities Council

x [mm]

Increase in core density

- Muon ionisation cooling has been demonstrated by MICE
 - Muons @ ~140 MeV/c
 - Transverse cooling only
 - No re-acceleration
 - No intensity effects

nature

Explore our content 🗸 👘 Journal information 🗸

nature > articles > article

Article | Open Access | Published: 05 February 2020

Demonstration of cooling by the Muon Ionization Cooling Experiment

MICE collaboration

Emittance reduction

- When absorber installed:
 - Cooling above equilibrium emittance
 - Heating below equilibrium emittance
 - When no absorber installed
 - Optical heating

Clear heating from Al window

International

The Muon Collider – Future R&D

UON Collider Collaboration

C. T. Rogers Rutherford Appleton Laboratory

Cooling Demonstrator

- Build on MICE
 - Longitudinal and transverse cooling
 - Re-acceleration
 - Chaining together multiple cells
 - Routine operation

Science and Technology Facilities Council

Comparison with MICE

TOF0

MICE

TOF1

 $1 \,\mathrm{m}$

Diffuser

UON Collider Collaboration

Focus Coil

LH₂ Absorber

Downstream Spectrometer Solenoid

Downstream Tracker

TOF2

KL

EMR

Upstream Spectrometer Solenoid

Upstream Tracker

	MICE	Demonstrator
Cooling type	4D cooling	6D cooling
Absorber #	Single absorber	Many absorbers
Cooling cell	Cooling cell section	Many cooling cells
Acceleration	No reacceleration	Reacceleration
Beam	Single particle	Bunched beam
Instrumentation	HEP-sty lechnology Facilities Council	Multiparticle-style

Preliminary Cooling Cell Concept

Optics vs momentum

- Operation in area A
 - High dynamic aperture
 - Larger **B**
 - Larger emittances
- Operation in area **B**
 - Lower dynamic aperture
 - Smaller β
 - Lower emittances
- Lattice operates in area **B**
 - May wish to check out area A also

Muon Source

Performance

M International

- Good cooling performance
 - Transverse and longitudinal emittance reduced by ~ 20 %
 - Approx factor two reduction in 6D emittance
- Optimisation ongoing
- Assumes perfect matching for now

Beam preparation system

🛋 🛋 International

- ~ 100 ps pulsed muon beams don't exist
 - Muons have only rarely been accelerated in conventional RF cavity
 - Low emittance muon beam challenging to achieve
- Need to consider a system to prepare the muon beam
 - Assume momentum collimation in switchyard
 - Transverse collimation
 - Longitudinal phase rotation

Beam Preparation System

Parameter	Value
Cell length	1 m
Peak solenoid field on-axis	0.5 T
Collimator radius	0.05 m
Dipole field	0.67 T
Dipole length	1.04 m
RF real estate gradient	7.5 MV/m
RF nominal phase	0° (Bunching)
RF frequency	704 MHz

Tecł _____ Facilities Council

Scie

Muon cooling - plan

RF Test programme, with upgradeable magnet configuration, to test novel RF technologies

Prototype of a cooling cryostat to test magnet, absorber and RF integration

Full cooling cryostat with beam

Full cooling lattice with beam

MUCOOL Cavity R&D

- Cooling requires strong B-field overlapping RF
 - B-field → sparking in RF cavities
- Two technologies have demonstrated mitigation

Bowring et al, PRAB 23 072001, 2020

gas

ouncil

Freemire et al, JINST 13 P01029, 2018

Non Collider Collaboration

Changeable Cu/Be walls

Synergy with nuSTORM

- NuSTORM \rightarrow "next scale" muon facility
 - FFA-based storage ring (no acceleration)
 - Muon production target and pion handling
 - Possibly shared with cooling demonstrator
- Aim to measure neutrino-nucleus cross-sections
 - E.g. reduce neutrino oscillation experiment resolutions
 - Nuclear physics studies
 - Sensitivity to Beyond Standard Mondard Mo

Synergy with mu2e

International **UON** Collider

Production Target

protons Muon-to-electron conversion experiments

- Look for rare decay processes
- Under construction now
- R&D for phase II in progress
- Target station similar to MC target
 - But lower power, lower field
- Excellent opportunity to test ideas on target station
- Build collaboration

ISIS Neutron and Muon Source

Facilities

Summary

NINTERNATIONAL UON Collider Collaboration

C. T. Rogers Rutherford Appleton Laboratory

Final Word

UON Collider Collaboration

- Development of a high brightness muon source is challenging
- Proton driver
 - Foil heating
 - Bunch compression
- Target
 - Radiation load, esp on the magnet
- Cooling
 - RF cavities
 - Novel technique
- Valuable to explore the technology

