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Muon Collider
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 MW-class proton driver → target
 Pions produced; decay to muons
 Muon capture and cooling
 Acceleration to TeV & Collisions
 Designed for high energy while maximising luminosity
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Recap

1) Luminosity increases with the square of muon energy/power
 Number of collisions per bunch increases as muon lifetime increases
 Beam size decreases as energy increases (geometric emittance)

2) High field, low circumference collider ring → more luminosity
 Shorter path length, more collisions before muon decay

3) Low repetition rate, few bunches is best
 Assume that the bottleneck is in the number of protons
 Fewer collisions, but each collision is more intense

4) High quality muon source is essential
 Low emittance, good capture efficiency

5) Good efficiency acceleration is essential
 High voltage systems

 The whole muon collider is designed to maximise luminosity!
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Artificial Muons

5

 Muons produced by putting protons onto target
 Pions come out
 Pions decay radioactively to muons
 Enables an intense muon source

Muon 

Neutrino 

PionTarget
Proton 
beam

Neutrons, kaons, electrons, ... 

Electron
Neutrino 

Neutrino 
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Proton Source

1) Ion source: spark across H 
gas to make H- ions

2) Accelerate and focus in 
Radiofrequency Quadrupole

3) Chop into pulsed beam using 
fast/slow kicker

4) Accelerate in linac
5) Inject into a ring through a 

foil
6) Accelerate some more 

(maybe)
7) Compress the proton bunch 

to very short length
8) Extract and bring onto a 

target

1 2 3
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ISIS neutron and muon source
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Charge Exchange Injection

 High current → accumulate beam over many turns
 Charge exchange injection of H- ions through a thin foil
 Foil removes electrons
 Issues: Scattering and energy loss of protons in foil

 Painting of beam into synchtron acceptance using fast 
“bumper” magnets

 Move recirculating/injected beam phase space
 Foil lifetime is critical limit
 Space charge at injection is critical limit

P during injection

H-
Thin foil

Pulsed dipoles
P after injection



  8

Bunch Compression

 Aim is to rotate the beam in longitudinal phase space
 Short proton bunch → short muon bunch
 Reduce longitudinal emittance of the muons

 Achieve bunch compression by rotation in the RF bucket
 Limitations:

 Space charge → higher energy

M. Aiba, CERN-AB-2008-060 BI (2008)
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MC Target

 Protons on target → pions → muons
 Heavily shielded, very high field solenoid captures π+ and π -

 Challenge: Energy deposition on solenoid
 Challenge: Solid target lifetime

p
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Radiation issues (magnet)
 Radiation load significant 

issue
 Degrades insulation/glue
 Requires more cooling

 1 kW heat → O(200) kW 
electricity

 Shield at room temperature
 Magnet at superconducting 

temperature
 HTS → warmer, more 

efficient

Neutrino factory, Bogomilov et al, PRSTAB 17 (2014)

Cryogenic

Room temp
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Radiation issues (target)
 Radiation on target can make 

an issue
 Instantaneous shock
 Long term radiation damage

 Liquid metal targets (Pb)
 Cavitation issues
 Specific issues around Hg

 Flowing/moving solid targets
 Geometry issues
 Target wheels – e.g. PSI
 Fluidised powder
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Muon front end

 Muon front-end to capture muon beam
 Solenoid taper
 Solenoid chicane removes high momentum particles
 Beryllium plug removes low momentum impurities
 Longitudinal capture system

 Adiabatically bunch beam
 Phase rotate
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Chicane/proton absorber
 Solenoid chicane

 No dipoles!
 Vertical dispersion → low pass filter
 Excellent transport properties within 

acceptance
 Beryllium plug

 Protons stop more quickly than muons/pions
 Removes low momentum protons
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Buncher/Phase Rotator
 Drift to develop energy-time relation 
 Buncher adiabatically ramp RF voltages
 Phase rotator → misphase RF

 High energy bunches decelerated
 Low energy bunches accelerated

time

m
om

en
tu

m
Early, fast bunches  deceleratedLate, slow bunches
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Luminosity consideration

 Proton beam power ~ 1-2 MW →  (FNAL, JPARC, SNS)
 Approx 0.1 μ+/- per 8 GeV proton → O(1e14) muons per MW
 BUT: muon front end produces multiple bunches (about 20)
 Rep rate is between 60 Hz (SNS) and 0.1 Hz (JPARC)
 Emittance is huge

Number of muons per 
proton beam power

Efficiency of 
muon acceleration

Rep rateNumber of 
bunches

Proton beam power

= 4.4e36 MeV MW-2 T-1 s-2
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 Muon front end produces huge flux of muons
 Muons have too large emittance at the source
 How can we reduce beam emittance? COOLING!

 Laser cooling
 Stochastic cooling
 Electron cooling
 Too slow

 Ionisation cooling (and Frictional cooling)

Ionisation Cooling - intro



  

Absorber

 Beam loses energy in absorbing material
 Absorber removes momentum in all directions
 RF cavity replaces momentum only in longitudinal direction
 End up with beam that is more straight

 Multiple Coulomb scattering from nucleus ruins the effect
 Mitigate with tight focussing
 Mitigate with low-Z materials
 Equilibrium emittance where MCS completely cancels the 

cooling

Ionisation Cooling

MUONSRF



  

 Normalised RMS beam emittance in 2D
 area of ellipse aligned with beam

                              are variance and covariance
 Also written as <uiuj>

 Can be written as

 In higher dimensions the definition generalises

Beam emittance in 4D

x

px

σ(x,px)

σ(x)

σ(px)



  

 Say we pass through some material at a focus
 P decreases due to ionisation
 Multiple Coulomb Scattering increases angular spread

 For a cylindrically symmetric beam with angular divergence 

The change in emittance is given by

Transverse cooling (1)



  

 Only pz and              change; applying product rule

 Use (from E2 + p2 = m2)

 Use standard formula

 Use scattering (from atomic physics)

 Gives

Transverse cooling (2)



  

 Rearranging

 There exists an equilibrium emittance where the two terms 
balance (no emittance change)

Transverse cooling (3)

dE/dz is negative!
Cooling

dE/dz is negative!
Cooling

Heating



  

 In longitudinal phase space, the beam is usually heated
 Heating due to random noise in the energy loss I.e. “straggling”
 Heating due to curvature in energy loss (heating or weak cooling)

 Mitigate using emittance exchange
 Move emittance from longitudinal to transverse phase space

Longitudinal Heating
Low energy particle 
loses more energy

High energy particle 
loses less energy



  

 Initial beam is narrow with some momentum spread
 Low transverse emittance and high longitudinal emittance

 Beam follows curved trajectory in dipole
 Higher momentum particles have higher radius trajectory
 Beam leaves dipole wider with energy-position correlation

 Beam goes through wedge shaped absorber
 Beam leaves wider without energy-position correlation
 High transverse emittance and low longitudinal emittance

Emittance exchange
Dipole Wedge 

shaped 
absorber



  

 Longitudinal emittance change becomes

Emittance exchange

dispersion Effective density 
Variation with position

 Transverse emittance change becomes



  

Hadron therapy application

dispersion Effective density 
Variation with position

 Transverse emittance change becomes
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Muon Accelerator R&D
 MERIT

 Demonstrated principles of muon 
accelerator proton targetry/pion production

 EMMA
 Demonstrated fast acceleration in FFAGs

 MUCOOL
 Cavity R&D for ionisation cooling
 Demonstrated operation of cavities at high 

voltage in magnetic field
 Breakdown suppression using high pressure 

gas
 Careful RF coupler design and cleaning in 

vacuum
 MICE

 Ionisation cooling demonstration
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Muon Ionisation Cooling Experiment 
(MICE)
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Experimental set up

Measure muon 
position and 
momentum 
downstream

Measure muon 
position and 
momentum
upstream

Cool the muon 
beam using 
LiH, LH2, or 
polyethylene 

wedge 
absorbers

Beam 
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Superconducting Magnets

 Spectrometer solenoids upstream and downstream
 400 mm diameter bore, 5 coil assembly
 Provide uniform 2-4 T solenoid field for detector systems
 Match coils enable choice of beam focus

 Focus coil module provides final focus on absorber
 Dual coil assembly - possible to flip polarity
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Absorber

 65 mm thick lithium hydride absorber
 350 mm thick liquid hydrogen absorber 

 Contained in two pairs of 150-180 micron thick Al windows
 45o polythene wedge absorber for longitudinal emittance 

studies
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Phase space reconstruction

 MICE individually 
measures every particle

 Accumulate particles into 
a beam ensemble

 Can measure beam 
properties with 
unprecedented precision
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Phase space reconstruction

 MICE individually 
measures every particle

 Accumulate particles into 
a beam ensemble

 Can measure beam 
properties with 
unprecedented precision

 E.g. coupling of x-y from 
solenoid fields
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Amplitude reconstruction

 Phase space (x, px, y, py)
 Normalise phase space 

to RMS beam ellipse
 Clean up tails

 Amplitude is distance of 
muon from beam core

 Conserved quantity in 
normal accelerators

 Ionization cooling 
reduces transverse 
momentum spread

 Reduces amplitude
 Mean amplitude ~ “RMS 

emittance”
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Increase in core density
 Muon ionisation cooling has been 

demonstrated by MICE
 Muons @ ~140 MeV/c
 Transverse cooling only
 No re-acceleration
 No intensity effects
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Emittance reduction
 When absorber installed:

 Cooling above equilibrium 
emittance

 Heating below equilibrium 
emittance

 When no absorber installed
 Optical heating
 Clear heating from Al window



  

The Muon Collider – Future R&D
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Cooling Demonstrator

 Build on MICE
 Longitudinal and transverse cooling
 Re-acceleration
 Chaining together multiple cells
 Routine operation
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Comparison with MICE

MICE Demonstrator
Cooling type 4D cooling 6D cooling
Absorber # Single absorber Many absorbers
Cooling cell Cooling cell section Many cooling cells
Acceleration No reacceleration Reacceleration
Beam Single particle Bunched beam
Instrumentation HEP-style Multiparticle-style
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Preliminary Cooling Cell Concept
2 m

Solenoid + 
dipole RF cavity Absorber

β = parameterised beam width
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Optics vs momentum
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180 190

 Operation in area A
 High dynamic aperture
 Larger β
 Larger emittances

 Operation in area B
 Lower dynamic aperture
 Smaller β
 Lower emittances

 Lattice operates in area B
 May wish to check out 

area A also

AB

Stop 
band

Pass 
band

Stop 
band

Pass 
band
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Performance

 Good cooling performance
 Transverse and 

longitudinal emittance 
reduced by ~ 20 %

 Approx factor two 
reduction in 6D emittance

 Optimisation ongoing
 Assumes perfect matching 

for now

Transmission losses 2.00%
Decay losses 4.00%

1.95 mm
1.57 mm
3.61 mm
2.99 mm

Trans ε in
Trans ε out
Long ε in
Long ε out
6D ε in 12.7 mm3

6D ε out 6.3 mm3
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Beam preparation system
 ~ 100 ps pulsed muon beams 

don’t exist
 Muons have only rarely been 

accelerated in conventional RF 
cavity

 Low emittance muon beam 
challenging to achieve

 Need to consider a system to 
prepare the muon beam

 Assume momentum collimation 
in switchyard

 Transverse collimation
 Longitudinal phase rotation



  

Muon cooling - plan
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MUCOOL Cavity R&D
 Cooling requires strong B-field overlapping RF

 B-field → sparking in RF cavities
 Two technologies have demonstrated mitigation

High 
Pressure
gas

E-field

Changeable Cu/Be walls

Double vs
Cu cavity 
in 0 T

Bowring et al, PRAB 23 072001, 2020

Freemire et al, JINST 13 P01029, 2018
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Synergy with nuSTORM

 NuSTORM → “next scale” muon facility
 FFA-based storage ring (no acceleration)
 Muon production target and pion handling
 Possibly shared with cooling demonstrator

 Aim to measure neutrino-nucleus cross-sections
 E.g. reduce neutrino oscillation experiment resolutions
 Nuclear physics studies
 Sensitivity to Beyond Standard Model physics



  

Synergy with mu2e

protons  Muon-to-electron 
conversion experiments

 Look for rare decay 
processes

 Under construction now
 R&D for phase II in progress
 Target station similar to MC 

target
 But lower power, lower field

 Excellent opportunity to 
test ideas on target station

 Build collaboration



  

Summary
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Final Word

 Development of a high brightness muon source is challenging
 Proton driver

 Foil heating
 Bunch compression

 Target
 Radiation load, esp on the magnet

 Cooling
 RF cavities
 Novel technique

 Valuable to explore the technology
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