Introductions to accelerators II: Transverse Dynamics

Dr Tatiana Pieloni (Tatiana.Pieloni@epfl.ch) Laboratory for Particle Accelerator Physics, EPFL

Linear Dynamics - continued

practical questions to be answered:

- \checkmark How to ensure bound motion of a particle beam?
- \checkmark What are conditions for stability?
- \checkmark Amplitude and frequency of particle oscillations?
- Statistical beam properties like beam width and angular spread?
- How to design magnet lattices (arrangements of dipoles and quads in a line)?
- Chromaticity
- What is the impact of field errors in bending and focusing magnets?

Statistical Beam Properties

- Single particle Phase space ellipse
- Courant-Snyder Invariant of motion
- Particle Action versus beam emittance
- Emittance and distribution function
- Liouville theorem
- consequences of conservation of emittance

Phase Space Ellipse

$$
x(s) = \sqrt{2J\beta} \cos(\varphi)
$$

$$
x'(s) = -\sqrt{\frac{2J}{\beta}} \left(\alpha \cos(\varphi) + \sin(\varphi) \right)
$$

J = particle action (oscillation amplitude)

observing the coordinates of a particle at one location in a ring for consecutive turns

x, x' describe an ellipse in phase space when φ is varied

example $\mu_{x} \approx 0.37 \times 2\pi$ phase advance per turn

see also Schmüser/Rossbach sect. 4.3/4.4, Wiedemann chap. 8.1.2

Courant-Snyder Invariant

- at one location this phase space ellipse is sampled by a particle with action *J*
- when moving along the magnet lattice, the ellipse is changing shape, but it stays an ellipse
- the area of the ellipse is invariant (Courant-Snyder Invariant) and equals $2\pi \times$ action.
- the unit is $[m\text{-}rad]$, or often $[mm\text{-}mrad]$
- this constant of motion refers to a **single particle**, **emittance** is a statistical property

area =
$$
2\pi J = \pi(\gamma x^2 + 2\alpha x x' + \beta x'^2)
$$

with : $\beta \gamma - \alpha^2 = 1$

E.D. Courant and H.S. Snyder, Theory of the Alternating Synchrotron, Annals of Physics 3 (1958) 1

Action vs. Emittance

- single particles are associated with a particular ellipse
- when observing a beam with a wire scanner a (projected) rms (root mean square) width σ_x is measured; one ellipse corresponds to σ_x
- emittance ε is the average value of action J

$$
\boxed{\varepsilon = }
$$

Beam Emittance

beam emittance as statistical property:

$$
\varepsilon_x=\sqrt{-^2}
$$

two-dimensional Gaussian distribution:

$$
f(x, x') = \frac{1}{2\pi\varepsilon_x} \exp\left(-\frac{\gamma x^2 + 2\alpha x x' + \beta x'^2}{2\varepsilon_x}\right)
$$

projected Gaussian distribution:

$$
f(x) = \frac{1}{\sqrt{2\pi}\sqrt{\beta_x \varepsilon_x}} \exp\left(-\frac{x^2}{2\beta_x \varepsilon_x}\right)
$$

Fractions of Beam in rms widths

From practical measurements (wire scan, beam screen) the projected rms width of the beam is determined.

What fraction of beam is contained in $n \times \sigma_{\rm rms}$?

compute the beam fraction inside an ellipse corresponding to $n \times \sigma_x$:

$$
J(x = n\sigma_x) = \frac{n^2}{2} \varepsilon_x
$$

$$
r = \frac{1}{2\pi\varepsilon_x} \int_0^{\frac{n^2}{2}\varepsilon_x} \int_0^{2\pi} \exp\left(-\frac{J}{\varepsilon_x}\right) dJ d\varphi
$$

note: This applies for a two dimensional Gaussian distribution.

$$
r = 1 - \exp(-n^2/2)
$$

Liouvilles Theorem

Beams subject to conservative forces as in our accelerator (without dissipative forces i.e. synchrotron radiation) \rightarrow preserve the phase space density over time

the phase space density is conserved
$$
\frac{d\psi}{dt} = 0
$$

The phase space density behaves like an incompressible liquid.

Conservation of Emittance

with a given emittance a beam can be made small with large angular spread, or can have small angular spread with a large size

Phase Space Ellipse in Drift Space

Phase Space Ellipse after focusing

Beam Waist (e.g. interaction point collider)

 $\sigma_{\rm rms} = \sqrt{\varepsilon \beta^*}, \ \sigma'_{\rm rms} =$

 β^* = Beta function at waist β^*

Phase Space Ellipse - Parameters

 $\langle xx' \rangle = -\alpha = 0$

Remarks on Beam Distributions

Electrons

in a ring electrons radiate photons which continuously mixes particles in phase space and generates an equilibrium Gaussian distribution

i.e. a large injected beam will shrink to equilibrium while a small beam will grow

Protons, Ions

```
"protons never forget" G.Voss
```
can have "strange" distributions since those depend on the history of beam generation and acceleration; i.e. no damping mechanism

however: in practice often close to Gaussian distribution

Next: FODO Lattices

- FODO parameter space
- FODO with bending magnets

Reminder: Quadrupole Doublet

$$
f^* = \frac{f^2}{l} > 0 \qquad \rightarrow \text{M}_{\text{doublet}} \text{ is always focusing}
$$

$$
\boldsymbol{M}_{\text{FODO}} = \begin{pmatrix} C & S \\ C' & S' \end{pmatrix} = \begin{pmatrix} 1 - \frac{L^2}{8f^2} & L\left(1 + \frac{L}{4f}\right) \\ -\frac{1}{f^*} & 1 - \frac{L^2}{8f^2} \end{pmatrix}, \frac{1}{f^*} = \frac{L}{4f^2} \left(1 - \frac{L}{4f}\right)
$$

Unit sequence of magnets used to build an accelerator Alternating gradients \rightarrow net focusing!

FODO Cell II

illustration:

particle trajectories of varying phase and amplitude in a FODO cell

Gaussian (projected) profile

FODO Cell Parameters

we obtain for β^+ in the focusing quad and β ⁻ in the defocusing:

$$
\beta^{\pm} = \frac{L}{2\sin\mu/2} \sqrt{\frac{1\pm\sin\mu/2}{1\mp\sin\mu/2}}
$$

phase advance per cell:

$$
\sin(\mu/2) = \frac{L}{4f}
$$

FODO Cell: choice of phase advance

FODO Cell with Bending Magnets

FODO structure with bending magnets to form a ring - the standard scheme for synchrotrons

Positive displacement x_a of the initial coordinate from the center axis leads to a longer path inside the magnet, i.e. more deflection

Negative displacement $-x_a$ of the initial coordinate from the center axis leads to a shorter path inside the magnet, i.e. less deflection

In both cases the trajectory comes closer to the central orbit \rightarrow **FOCUSING**

Weak focusing can be neglected for machines with large bending radius

Dispersion

....for particles with δ energy equations of motion change!

$$
x'' + \left(\frac{1}{\rho^2} + k\right)x = \left(\frac{1}{\rho}\frac{\Delta p}{p_0}\right)
$$

$$
y'' - ky = 0
$$
 $\delta \neq 0$

Bending in a dipole changes with the particle energy…

Off-momentum particles

$$
x'' + k(s)x = \frac{\delta}{\rho}
$$

The motion is a sum of the solution of homogeneous equation $+$ a particular solution

Dispersion function

Particle deviation from ideal orbit

$$
x = x_{\beta} + x_{\varepsilon} = x_{\beta} + D(s) \cdot \delta
$$

 $D(s)$ - dispersion function

• Periodic solution of the inhomogeneous Hill equation

$$
D'' + k(s)D = \frac{1}{\rho(s)} \left\{ \begin{aligned} &= 0 \text{ in straights} \\ &= \frac{1}{\rho} \text{ in bends} \end{aligned} \right\}
$$

- New equilibrium orbit of a particle with energy deviation δ
- Betatron oscillations are executed around this new equilibrium

FODO cell lattice

Dispersion Function in a Ring

the dispersion function at position s is calculated by integrating over contributions from bending magnets ($1/\rho \neq 0$) around the ring:

$$
D(s) = \frac{\sqrt{\beta(s)}}{2\sin(\pi Q)} \oint dt \frac{\sqrt{\beta(t)}}{\rho(t)} \cos(\varphi(t) - \varphi(s) - \pi Q)
$$

$$
D'(s) = \frac{1}{2\sqrt{\beta(s)}\sin(\pi Q)} \oint dt \frac{\sqrt{\beta(t)}}{\rho(t)} (\alpha(s)\cos(\dots) + \sin(\dots))
$$

D, D' are periodic functions:

$$
D(s+C) = D(s), \ D'(s+C) = D'(s)
$$

Beam size with finite momentum spread

besides emittance also momentum spread may contribute to beam size and angular spread, via dispersion function; when the beam momentum spread is δ :

quadratic addition of transverse and
longitudinal contributions:

$$
\sigma_{\rm tot}^2 = \sigma_{\varepsilon}^2 + \sigma_{\delta}^2 = \varepsilon \beta + D^2 \frac{\delta p^2}{p_0^2}
$$

$$
{\sigma_{\rm tot}'}^2 = {\sigma_{\varepsilon}'}^2 + {\sigma_{\delta}'}^2 = \varepsilon \frac{1 + \alpha^2}{\beta} + D'^2 \frac{\delta p^2}{p_0^2}
$$

at some locations the momentum contribution should be suppressed by designing for $D=0$, $D'=0$ examples:

- interaction point in a collider where beams should be as small as possible
- undulators/source magnets, where divergence of emitted radiation should be small

Next: Chromatic Focusing Error

- Focusing Error What happens?
- Chromaticity
- Correction using Sextupole Magnets

Chromatic Errors

a spread of momentum leads to chromatic aberrations, similarly to aberrations of optical lenses:

Chromaticity

particles with momentum deviation are focused differently, leading to a shift of the betatron frequency

$$
K = \frac{eg}{p} \quad dK = -\frac{eg\,dp}{p^2} = -K_0 \frac{dp}{p}
$$

Chromaticity ξ = change of tune per relative change of momentum:

$$
\Delta Q = \xi \, \frac{\Delta p}{p_0}
$$

integration over gradients around ring, betafunction as "sensitivity factor":

$$
\xi_x = -\frac{1}{4\pi} \oint K(s) \beta_x(s) ds
$$

Sextupol Magnet

Sextupoles are placed in a region of finite dispersion: sort particles according to their energy deviation

$$
x_d = D(s) \cdot \frac{\Delta p}{p}
$$

[PSI / SLS Sextupol]

Chromaticity – Correction using Sextupoles

Caution with Sextupoles

- while sextupoles can correct chromatic focusing errors, they are **nonlinear elements**
- nonlinear elements **drive resonances and reduce the dynamic aperture** of a ring, which must be carefully optimized when designing a ring

phase space portrait with sextupole kick

Next: Lattice Imperfections

- closed orbit distortion
- gradient errors

Closed Orbit

The stable mean value around which the particles the stable mean value around which the particles \sim trajectory is not closed oscillate is called the **closed orbit**. Every particle in the beam oscillates around the closed orbit.

- in practice the **closed orbit** does not exactly follow the **design orbit**, but deviates due to small errors
- the closed orbit represents the beam center, **particles with nonzero actions oscillate around it**
- to assess practical implications and tolerances the effect of orbit distortions must be estimated

[closed orbit – conceptual sketch]

The closed orbit

The general expression of the **closed orbit** $X_{co}(s)$ in the presence of a **deflection** θ is:

Unintended deflection

- The first source is a field error (deflection error) of a dipole magnet.
- This can be due to an **error** in the **magnet current** or in the **calibration table** (measurement accuracy etc).
	- The imperfect dipole can be expressed as a perfect one + a small error.

 \Box A small rotation (misalignment) of a dipole magnet has the same effect, but in the other plane.

Unintended deflection

 \Box The second source is a misalignment of a quadrupole magnet.

– The misaligned quadrupole can be represented as a perfectly aligned quadrupole plus a small deflection.

Effect of a deflection

- We set the machine tune to an integer value:
	- $Q = n \in N$
- \Box When the tune is an integer number, **the deflections add up on every turn** !
	- The amplitudes diverge, the particles do not stay within the accelerator vacuum chamber.

Effect of a deflection

- We set the machine tune to a half integer value:
	- Q = n+0.5, n \in N
- \Box For half integer tune values, **the deflections compensate on every other turn** !
	- The amplitudes are stable.
- \Box This looks like a much better working point for Q!

Many turns reveal something

- Let's plot the 50 first turns on top of each other and change Q.
	- All plots are on the same scale

- q The particles **oscillate around a stable mean value** $(Q \neq n)!$
- \Box The amplitude diverges as we approach $Q = n \rightarrow$ integer resonance
- 44 \Box We just encountered our first **resonance** – the integer resonance that occurs when $Q = n \in N$

Gradient Error

$$
x'' + (K_0(s) + \Delta K(s)) x = 0
$$

most simple case: the distortion of the gradient is
short and can be treated as a thin lens

$$
K(s)
$$

we want to know:

- 1. the **tune shift** caused by the error
- 2. the modification of the beam width (via computing $Δβ(s)$)

Gradient Error - Calculation

method: modify 1-turn transport matrix by multiplying thin lens error matrix

resulting tune shift for distributed gradient errors:

$$
\Delta Q = \frac{1}{4\pi}\oint \beta(s)\Delta K(s)ds
$$

see Wiedemann sec. 15.3.1

$$
\Delta\beta(s) = \frac{\beta(s)}{2\sin(2\pi Q)} \oint dt \ \beta(t)\Delta K(t) \cos(2(\varphi(s) - \varphi(t) - \pi Q))
$$

solution explodes for Q \to Integer × 0.5 note: double frequency

- this error modulates the beam width around the ring
- the effect is called "Beta-Beat"
- the Beta-Beat propagates at the double frequency of an orbit distortion

Gradient Error Example continued

accelerator lattice with 13 regular FODO cells, one quad in center has an error of +2% when $\Delta\beta/\beta$ is plotted against phase advance we see the "error kick" and the double beat frequency

Next: Lattice Insertions

• low Beta insertion

Low Beta Insertion

Low Beta Insertion

the most simple IR configuration

- doublet focusing
- large beta function in doublet \rightarrow aperture limitation for ring

see also Wiedemann sec. 10.2.4

Low Beta Insertion – Example of LHC

Momentum offset = 0.00%

s (m)

Beam Waist (e.g. interaction point collider)

 $\sigma_{\rm rms} = \sqrt{\varepsilon \beta^*}, \ \sigma'_{\rm rms} =$

 β^* = Beta function at waist

Orbit Correction: Reminder - Closed Orbit Distortion by Kick θ

$$
x(s) = \frac{\theta \sqrt{\beta(s)\beta_0}}{2\sin(\pi Q)} \cos(\varphi(s) - \pi Q)
$$

kick θ is caused by an unwanted magnetic field, or an off-set quadrupole (errors) however, kick can be applied also on purpose to correct the orbit

with several kicks
$$
\theta_j
$$
 the contributions are added:
\n
$$
x_k = \sum_j \frac{\sqrt{\beta_k \beta_j} \cos(|\varphi_k - \varphi_j| - \pi Q)}{2 \sin(\pi Q)} \theta_j
$$

Orbit Correction

given is a set of beam positions representing an orbit x_k

calculate a set of (wanted) corrector strengths θ_i to minimize the orbit amplitide

this can be formulated as a problem of linear algebra (R_{ki} coefficients last slide):

$$
\vec{x}_{\text{pos}} + \mathbf{R}\vec{\theta}_{\text{cor}} = 0
$$

this is solved exactly for $N_{pos} = N_{cor}$, however in practice we need flexible solutions

Singular Value Decomposition (SVD) is one approach:

$$
\bm{R} = \bm{U} \cdot \bm{W} \cdot \bm{V}^\mathrm{T}
$$

$$
\bm{R}_{\mathrm{inv}} = \bm{V} \cdot \bm{W}^{-1} \cdot \bm{U}^\mathrm{T}
$$

W = diagonal matrix with singular values, inversion simple

$$
\vec{\theta}_{\text{cor}} = -\boldsymbol{V} \boldsymbol{W}^{-1} \boldsymbol{U}^{\text{T}} \cdot \vec{x}_{\text{pos}}
$$

- solution: $N_{pos} = N_{cor}$: exact solution
	- $N_{pos} < N_{cor}$: minimizes $|\vec{\theta}|$ (magnet currents)
	- $N_{pos} > N_{cor}$: minimizes $|\vec{x}|$ (rms orbit deviation)

® **in practice this is done using computer codes of the accelerator control system**