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Linear Dynamics - continued

practical questions to be answered:
ü How to ensure bound motion of a particle beam?
ü What are conditions for stability?
ü Amplitude and frequency of particle oscillations?
• Statistical beam properties like beam width and angular spread?
• How to design magnet lattices (arrangements of dipoles and quads in a line)?
• Chromaticity
• What is the impact of field errors in bending and focusing magnets?
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Statistical Beam Properties

• Single particle Phase space ellipse
• Courant-Snyder Invariant of motion
• Particle Action versus beam emittance
• Emittance and distribution function
• Liouville theorem
• consequences of conservation of emittance
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Phase Space Ellipse
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J = particle action (oscillation amplitude) 

observing the coordinates of a particle at 
one location in a ring for consecutive turns

x, x’ describe an ellipse in phase space 
when j is varied

example µx » 0.37×2p phase advance per 
turn

4see also Schmüser/Rossbach sect. 4.3/4.4, Wiedemann chap. 8.1.2



Courant-Snyder Invariant

E.D. Courant and H.S. Snyder, Theory of the Alternating 
Synchrotron, Annals of Physics 3 (1958) 1

x’

x

• at one location this phase space ellipse is 
sampled by a particle with action J

• when moving along the magnet lattice, the 
ellipse is changing shape, but it stays an ellipse

• the area of the ellipse is invariant (Courant-
Snyder Invariant) and equals 2p × action.

• the unit is [m×rad], or often  [mm×mrad]
• this constant of motion refers to a single 

particle, emittance is a statistical property
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Action vs. Emittance

sx

• single particles are associated with a 
particular ellipse

• when observing a beam with a wire 
scanner a (projected) rms (root  mean 
square) width sx is  measured; one ellipse 
corresponds to sx

• emittance e is the average value of action J
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Beam Emittance

beam emittance as statistical property:

two-dimensional Gaussian distribution:

projected Gaussian distribution:

7see Wiedemann sec. 8.1.3 



Fractions of Beam in rms widths

rms width n beam fraction r
1 39%

2 86%

3 99%

From practical measurements (wire scan, beam screen) the projected rms 
width of the beam is determined.
What fraction of beam is contained in 𝑛×𝜎!"#?

compute the beam fraction inside an ellipse 
corresponding to n´sx:

note: This applies for a 
two dimensional 
Gaussian distribution.
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Liouvilles Theorem

the phase space density is conserved     𝒅𝝍
𝒅𝒕
= 𝟎

The phase space density behaves 
like an incompressible liquid.

q

p

9see also Wiedemann sec. 8.1.1 

Beams subject to conservative forces as in our accelerator (without dissipative forces i.e. 
synchrotron radiation) à preserve the phase space density over time



Conservation of Emittance
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with a given emittance a beam can be made small with large angular spread, 
or can have small angular spread with a large size
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Phase Space Ellipse in Drift Space

remember:
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Phase Space Ellipse after focusing
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Beam Waist (e.g. interaction point collider)

13β* = Beta function at waist



Phase Space Ellipse - Parameters

for upright ellipse:

reminder:

x’

x
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Remarks on Beam Distributions

Protons, Ions
“protons never forget” G.Voss
can have “strange” distributions since those depend on the history of 
beam generation and acceleration; i.e. no damping mechanism
however: in practice often close to Gaussian distribution

Electrons
in a ring electrons radiate photons which continuously mixes particles 
in phase space and generates an equilibrium Gaussian distribution
i.e. a large injected beam will shrink to equilibrium while a small beam 
will grow
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Next: FODO Lattices

• FODO parameter space
• FODO with bending magnets
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Reminder: Quadrupole Doublet

l

®Mdoublet is always focusing
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FODO Cell
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Unit sequence of magnets used to build an accelerator
Alternating gradients à net focusing!



FODO Cell II

illustration:
particle trajectories of varying 
phase and amplitude in a 
FODO cell

Gaussian (projected) profile
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FODO Cell Parameters

we obtain for b+ in the focusing quad 
and b- in the defocusing:

phase advance per cell:

b+

b -

20see Wiedemann sec. 10.1 



FODO Cell: choice of phase advance

b+ reaches minimum at µopt=76.3deg
at this point the vacuum chamber 
needs a minimal size

note sc
alin

g p
er L

21

Example LEP(CERN) 
operating modes:
µx/µy [degrees]:
60/60, 90/60, 90/90, 102/90

(stronger foc. = smaller emittance)



FODO Cell with Bending Magnets
FODO structure with bending magnets to form a ring - the standard scheme for synchrotrons

D/2

F
B

B B
B

FD

D/2

example:
• 2 FODO cells
• r = 55m
• separated function 
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Weak focusing can be neglected for machines with large bending radius 



Dispersion
….for particles with d energy equations of motion change!

Bending in a dipole changes 
with the particle energy…

� 6= 0







D(s) is a periodic function in FODO cells



Dispersion Function in a Ring

the dispersion function at position s is calculated by integrating over 
contributions from bending magnets (1/r≠0) around the ring:

D, D’ are periodic functions:
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Beam size with finite momentum spread
besides emittance also momentum spread may contribute to beam size and 
angular spread, via dispersion function; when the beam momentum spread is d:

d > 0d < 0

x

x’
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quadratic addition of transverse and 
longitudinal contributions:

at some locations the momentum contribution should be suppressed by
designing for D=0, D‘=0
examples:
• interaction point in a collider where beams should be as small as possible
• undulators/source magnets, where divergence of emitted radiation

should be small



Next: Chromatic Focusing Error

• Focusing Error - What happens?
• Chromaticity
• Correction using Sextupole Magnets
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Chromatic Errors
a spread of momentum leads to chromatic aberrations, similarly to 
aberrations of optical lenses:

nominal focal length

Dp/p > 0Dp/p = 0Dp/p < 0
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Chromaticity

particles with momentum deviation are focused differently, leading to a 
shift of the betatron frequency

Chromaticity x = change of tune per relative change of momentum:

integration over gradients around ring, betafunction as “sensitivity factor”:

33see Wiedemann sec. 15.4.1 



Sextupol Magnet

[PSI / SLS Sextupol]

Sextupoles are placed in a region of finite dispersion:
sort particles according to their energy deviation
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Chromaticity – Correction using Sextupoles
nominal focal length

quadrupol sextupol

Dp/p > 0

Dp/p = 0

Dp/p < 0
a sextupol acts like a position 
dependent quadrupole

positive 
dispersion
Dx > 0
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total chromaticity 
in a ring:

see Wiedemann 
sec. 15.4.2 



Caution with Sextupoles

• while sextupoles can correct chromatic focusing errors, they are 
nonlinear elements
• nonlinear elements drive resonances and reduce the dynamic 

aperture of a ring, which must be carefully optimized when 
designing a ring 

phase space 
portrait with 
sextupole kick

36



Next: Lattice Imperfections

• closed orbit distortion
• gradient errors
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Closed Orbit
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[closed orbit – conceptual sketch]

the oscillating 
trajectory is not closed

The stable mean value around which the particles 
oscillate is called the closed orbit. Every particle in 
the beam oscillates around the closed orbit.

• in practice the closed orbit does not 
exactly follow the design orbit, but 
deviates due to small errors

• the closed orbit represents the 
beam center, particles with nonzero 
actions oscillate around it

• to assess practical implications and 
tolerances the effect of orbit 
distortions must be estimated

see Wiedemann sec. 15.2.3



The closed orbit
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The general expression of the closed orbit Xco(s) in the presence of a deflection q is:

q
p

pµµbb qq

)sin(2
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Q

Qss
sx

--
=

oscillating term
kink at the location of 

the deflection

divergence for Q = n

amplitude modulated by 
the envelope b

Xco(s)



Unintended deflection
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• The first source is a field error (deflection error) of a dipole magnet.
• This can be due to an error in the magnet current or in the calibration table 

(measurement accuracy etc).
• The imperfect dipole can be expressed as a perfect one + a small error.

= +
real dipole ideal dipole small dipole error

q A small rotation (misalignment) of a dipole magnet has the same effect, but in the other 
plane.

= +
real dipole ideal dipole

small dipole error



Unintended deflection
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= +

real quadrupole ideal quadrupole

q The second source is a misalignment of a quadrupole magnet.
– The misaligned quadrupole can be represented as a perfectly aligned 

quadrupole plus a small deflection.

small dipole error

No magnetic field on 
the beam axis

Non-zero magnetic field 
on the beam axis !



Effect of a deflection
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• We set the machine tune to an 
integer value:
• Q = n ÎN

Turn no 1

Turn no 2

Turn no 3

Turn no 4

Deflection

Beam direction

q When the tune is an integer 
number, the deflections add 
up on every turn !

– The amplitudes diverge, 
the particles do not stay 
within the accelerator 
vacuum chamber.

Xco(s)



Effect of a deflection
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• We set the machine tune to a half 
integer value:
• Q = n+0.5, n ÎN

Turn no 1

Deflection

q For half integer tune values, 
the deflections compensate on 
every other turn !

– The amplitudes are stable.

q This looks like a much better 
working point for Q!

Turn no 2

Turn no 3

Turn no 4

Beam direction

Xco(s)



Many turns reveal something
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Q = n + 0.5 Q = n + 0.4

Q = n + 0.3 Q = n + 0.2

Q = n + 0.05

q The particles oscillate around a 
stable mean value (Q ≠ n)!

q The amplitude diverges as we 
approach Q = n à integer resonance

Q = n + 0.1

Q = n

• Let’s plot the 50 first turns on top of each other and change 
Q.
• All plots are on the same scale

q We just encountered our first 
resonance – the integer resonance
that occurs when Q = n ÎN



Gradient Error

sC

K(s)

most simple case: the distortion of the gradient is
short and can be treated as a thin lens

we want to know:
1. the tune shift caused by the error
2. the modification of the beam width (via computing Dβ(s)) 
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Gradient Error - Calculation
method: modify 1-turn transport matrix by multiplying thin lens error matrix

resulting tune shift for 
distributed gradient errors:
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see Wiedemann 
sec. 15.3.1

solution explodes for Q ® Integer × 0.5

• this error modulates the beam width around the ring

• the effect is called „Beta-Beat“

• the Beta-Beat propagates at the double frequency of an orbit distortion

note: double frequency



Gradient Error Example continued
accelerator lattice with 13 regular FODO cells, one quad in center has an error of +2%
when Db/b is plotted against phase advance we see the “error kick” and the double 
beat frequency
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Next: Lattice Insertions

• low Beta insertion
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Low Beta Insertion

concept sketch: using a 
quadrupole doublet it is 
possible to focus particles in 
the horizontal and vertical 
planes simultaneously through 
the interaction point

incoming trajectories, parallel 
to reference orbit, in x,y
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Low Beta Insertion

the most simple IR configuration
• doublet focusing
• large beta function in doublet 

® aperture limitation for ring

50

see also Wiedemann 
sec. 10.2.4



Low Beta Insertion – Example of LHC 

LHC interaction region
with Low-Beta + D.S.
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Beam Waist (e.g. interaction point collider)

52β* = Beta function at waist
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Orbit Correction: 
Reminder - Closed Orbit Distortion by Kick q

kick q is caused by an unwanted magnetic 
field, or an off-set quadrupole (errors)
however, kick can be applied also on 
purpose to correct the orbit

with several kicks qj the contributions are added: 



Orbit Correction
given is a set of beam positions representing an orbit 𝑥'

calculate a set of (wanted) corrector strengths 𝜃( to minimize the orbit amplitide

this can be formulated as a problem of linear algebra (Rkj coefficients last slide):

this is solved exactly for 𝑁)*+ = 𝑁,*-, however in practice we need flexible solutions

Singular Value Decomposition (SVD) is one approach:

W = diagonal matrix with singular values, 
inversion simple

solution: • 𝑁)*+ = 𝑁,*-: exact solution

• 𝑁)*+ < 𝑁,*-: minimizes |�⃗�| (magnet currents)

• 𝑁)*+ > 𝑁,*-: minimizes |�⃗�| (rms orbit deviation)

® in practice this is done using computer codes of the accelerator control system

see Wiedemann sec. 15.4.2


