Introductions to accelerators I: Transverse Dynamics

Dr Tatiana Pieloni (Tatiana.Pieloni@epfl.ch) Laboratory for Particle Accelerator Physics, EPFL

Introduction to particle Dynamics

Accelerator = series of elements for **beam guiding** (bending, focusing) and acceleration

- often arranged in a closed loop (ring) or in a periodic "straight" sequence (linacs)
- guiding fields must ensure stability of circulating particles

Introduction to particle Dynamics

Accelerator = series of elements for **beam guiding** (bending, focusing) and acceleration

- often arranged in a closed loop (ring) or in a periodic "straight" sequence (linacs)
- guiding fields must ensure stability of circulating particles

questions to be answered:

- Can we describe the particle motion?
- How to ensure bound motion of a particle beam?
- What are conditions for stability?
- Statistical beam properties like beam width and angular spread?
- How to design magnet lattices (arrangements of dipoles and quads in a line)?
- What happens when non-linear effects occur?
- What is the impact of field errors in bending and focusing magnets?

References and accessible Reading Material

available on the internet:

P. Schmüser & J. Rossbach, Basic course on accelerator optics: https://cds.cern.ch/record/247501/files/p17.pdf

F.Tecker, Longitudinal Dynamics:

https://arxiv.org/pdf/1601.04901.pdf

L.Rivkin, Electron dynamics in rings in the presence of radiation : https://cds.cern.ch/record/375974/files/p45.pdf

Book, H.Wiedemann, Particle Accelerators, download pdf !: https://link.springer.com/book/10.1007%2F978-3-319-18317-6

CERN Accelerator School (CAS) proceedings homepage (huge!) http://cas.web.cern.ch/cas/CAS_Proceedings.html

CERN Accelerator School on Medical Applications:

https://cds.cern.ch/record/2271793/files/33-8-PB.pdf

books, papers:

S.Peggs, T.Satogata, *Introduction to Accelerator Dynamics*, Cambridge University Press, 2017

A. Wolski, *Beam Dynamics in high energy particle accelerators*, Imperial College Press, 2014

A. W. Chao, M. Tigner, *Handbook of Accelerator Physics and Engineering*, World Scientific 1999

E. D. Courant and H. S. Snyder, Annals of Physics: 3, 1-48 (1958)

M. Sands, SLAC-121, 1969

Physics of Electron Storage Rings: An Introduction.

https://digital.library.unt.edu/ark:/67531/metadc865991/

Accelerating particles \rightarrow Towards Relativity

Acceleration of particles: basic relativistic relations

relativistic energymomentum relation:

$$E = \sqrt{m_0^2 c^4 + c^2 p^2}$$
$$= m_0 c^2 + E_k$$

$$v = c\sqrt{1 - m_0^2 c^4/E^2}$$
$$= \beta c$$

in the limit

$$E \rightarrow \infty$$
: $v \rightarrow c, m_{\text{eff}} \rightarrow \infty$

 $p = \beta c \cdot \gamma m_0$

$$\gamma = \frac{E}{m_0 c^2} = 1 + \frac{E_k}{m_0 c^2}$$
$$\beta = \sqrt{1 - 1/\gamma^2}$$

Particles to Accelerate

Speed of different particles vs energy

electric field

energy gain: $\Delta E_k = eU$

magnetic field bending: $B\rho = p/e$, $\Delta E_k = 0$

H.A.Lorentz 1853-1928

Lorentz Force – getting it right

$$B\rho[\text{Tm}] = 3.3356 \cdot \beta E_{\text{tot}}[\text{GeV}]$$

[see appendix for derivation]

Comparison E and B field

Bending radius for protons in B and E:

example: electric and magnetic force on protons

$$\vec{F_E} = e \cdot \vec{E}, \quad \vec{F_B} = e \cdot \vec{v} \times \vec{B}$$

table: bending radius, varying E_k

E _k	B = 1T	E = 10MV/m
60 keV	35 mm	12 mm
1 MeV	140 mm	200 mm
1 GeV	5.6 m	150 m

Magnetic fields are used exclusively to bend and focus ultra-relativistic particles

Make Particles Circulate

Focusing the Particles

Bending Magnet - SLS dipole

magnetic rigidity:

$$B\rho = \frac{p}{e}$$

Quadrupole Magnet - Focusing Element

Quadrupole magnets

В

B

F

↑_↑

• Focusing in one plane

B

pole

B

• Defocusing in the other plane

Gradients g

Next: Equation of Motion

- suited coordinate system
- linearizing forces and deriving differential equation

Curvelinear Coordinate System

aim: derive a set of equations that describe the motion of a single particle wrt. a curved coordinate system around the reference orbit of a beam, (x, y)

see also: Frenet-Serret coordinates, e.g. Wiedemann chap 4.3

Deriving the Equation of Motion in x-plane (see Appendix)

the effect of the curved coordinate system, i.e. the moving unit vectors e_x , e_s must be included in the calculation

 $\frac{d\vec{p}}{dt} = \gamma m_0 \ddot{\vec{R}} = \vec{F}$ starting with general equation of motion: dipole and $B_y = B_0 + gx, \ B_x = gy$ quadrupole field $= \frac{eB_0}{\gamma m_0 v}$ orbit curvature $g \equiv \frac{\partial B_y}{\partial x} = \frac{\partial B_x}{\partial y}$ Quadrupole field gradient sign convention! $k = \frac{eg}{\gamma m_0 v}$ k - value $x'' + \left(\frac{1}{\rho^2} + k\right)x = \frac{1}{\rho}\frac{\Delta p}{p_0}$

derivative w.r.t. path-length s, not time t

curved coordinates

k - value

off momentum term

Equation of Motion in x and y planes:

$$x'' + \left(\frac{1}{\rho^2} + k\right)x = \frac{1}{\rho}\frac{\Delta p}{p_0}$$
$$y'' - ky = 0$$

Equation of Motion in x and y planes:

$$x'' + \left(\frac{1}{\rho^2} + k\right) x = \frac{1}{\rho} \frac{\Delta p}{p_0}$$
$$y'' - ky = 0$$
generalised form:
$$x'' + K(s)x = \frac{1}{\rho(s)} \frac{\Delta p}{p_0}$$

*see also Wiedemann sec. 1.5.8

Equation of Motion in x and y planes:

$$x'' + \left(\frac{1}{\rho^2} + k\right) x = \frac{1}{\rho} \frac{\Delta p}{p_0}$$
$$y'' - ky = 0$$

Differential Equation valid for:

- drift spaces
- Quadrupoles (*k*≠0)
- combined function magnets (k≠0, 1/ρ≠0)
- off-momentum particles (∆p≠0, first order)

we discuss solutions of different cases of this equations in single accelerator magnets, depending on K(s), ρ (s), Δp

*see also Wiedemann sec. 1.5.8

Summary on Approximations used

- small displacements $x \ll \rho$, $y \ll \rho$, $\ddot{s} \approx 0$ (paraxial optics)
- only dipole and quadrupole magnets (linear field changes)
- design orbit lies in a plane (flat accelerator)
- no coupling between motion in hor. and vert. plane (upright magnets)
- small momentum deviations (quasi monochromatic beam)
- in general: no quadratic or higher order terms (linear beam optics)

geometric meaning of coefficients

$$x'' + K(s)x = \frac{1}{\rho(s)}\frac{\Delta p}{p_0}$$

Next: Solving the Equation of Motion using Matrices

- drift space, focusing and defocusing quadrupole
- TWISS matrix and stability criterion

$$x'' + K(s)x = \frac{1}{\rho(s)}\frac{\Delta p}{p_0}$$

Piecewise Solution of Equation

$$x'' + K(s)x = 0$$

general form of equation similar to harmonic oscillator with three cases: *K*=0, *K*<0, *K*>0

$$m\ddot{x} + kx = 0, \ \omega = \sqrt{\frac{k}{m}}$$

Drift Space

On momentum particles ($\Delta p = 0$) moves straight

$$x'' + K(s)x = 0$$

1) K=0 \rightarrow Drift Space

$$\left(\begin{array}{c} x\\ x' \end{array}\right)_{\rm out} = \left(\begin{array}{cc} 1 & L\\ 0 & 1 \end{array}\right) \left(\begin{array}{c} x\\ x' \end{array}\right)_{\rm in}$$

Focusing Quadrupole

On momentum particles ($\Delta p = 0$) x'' + K(s)x = 0

2) K>0: Focusing Quadrupole

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{\text{out}} = \begin{pmatrix} \cos(\sqrt{K}L) & \sin(\sqrt{K}L)/\sqrt{K} \\ -\sin(\sqrt{K}L)\sqrt{K} & \cos(\sqrt{K}L) \end{pmatrix} \begin{pmatrix} x \\ x' \end{pmatrix}_{\text{in}}$$

thin lens approximation: $K = \frac{1}{Lf}, \lim_{L \to 0} \left(\sin\left(\sqrt{L/f}\right) \frac{1}{\sqrt{Lf}} \right) = \frac{1}{f}$

$$\left(\begin{array}{c} x\\ x' \end{array}\right)_{\rm out} = \left(\begin{array}{cc} 1&0\\ -1/f&1 \end{array}\right) \left(\begin{array}{c} x\\ x' \end{array}\right)_{\rm in}$$

Defocusing Quadrupole

3) K<0: Defocusing Quadrupole

$$\left(\begin{array}{c} x\\ x' \end{array}\right)_{\rm out} = \left(\begin{array}{c} \cosh(\sqrt{|K|}L) & \sinh(\sqrt{|K|}L)/\sqrt{|K|}\\ \sinh(\sqrt{|K|}L)\sqrt{|K|} & \cosh(\sqrt{|K|}L) \end{array}\right) \left(\begin{array}{c} x\\ x' \end{array}\right)_{\rm in}$$

thin lens approximation for defocusing quad:

$$\left(\begin{array}{c} x\\ x' \end{array}\right)_{\rm out} = \left(\begin{array}{cc} 1& 0\\ 1/f & 1 \end{array}\right) \left(\begin{array}{c} x\\ x' \end{array}\right)_{\rm in}$$

Quadrupole Doublet

concatenation of particle transport through a series of elements:

 $oldsymbol{M} = oldsymbol{M}_n \dots oldsymbol{M}_2 \cdot oldsymbol{M}_1$ (**M** = transport matrix 2x2)

 $f^* = \frac{f^2}{l} > 0 \quad \rightarrow \mathcal{M}_{\text{doublet}}$ is always focusing

Courant - Snyder parameters: transfer matrices

Consider a transfer matrix M for a full turn starting at some point

- We know that det M = 1
- Any such matrix with unit determinant can be parameterized:

$$M_{period} = \begin{pmatrix} \cos \mu + \alpha \sin \mu & \beta \sin \mu \\ -\gamma \sin \mu & \cos \mu - \alpha \sin \mu \end{pmatrix}$$

where in order to satisfy the condition of unit determinant

$$\beta\gamma - \alpha^2 = 1$$

we can regard this now as just a formal parameterization

Twiss Parameters:

$$\begin{aligned} \alpha(s) &= -\frac{1}{2}\beta'(s) \\ \gamma(s) &= \frac{1+\alpha^2}{\beta} \end{aligned}$$

 $\beta(s)$

 β - famous **Betafunction** of accelerators these variables **are not related to relativistic factors**

(sorry for the historic nomenclature)

Stability of Motion

The transfer matrix of a beamline that consists of elements with individual matrices M_1 , M_2 , ..., $M_n = M_n \cdot ... \cdot M_2 \cdot M_1$ (N.B. the order in which matrices are multiplied!)

Full turn matrix M

$$\begin{pmatrix} x \\ x' \end{pmatrix}_n = M^n \begin{pmatrix} x \\ x' \end{pmatrix}_0$$

After n turns must remain finite for arbitrarily large n

Stability condition

Let v_1 and v_2 be eigenvectors and λ_1 and λ_2 eigenvalues of M

$$\begin{pmatrix} x \\ x' \end{pmatrix}_0 = A\mathbf{v}_1 + B\mathbf{v}_2 \qquad \qquad M^n \begin{pmatrix} x \\ x' \end{pmatrix}_0 = A\lambda_1^n \mathbf{v}_1 + B\lambda_2^n \mathbf{v}_2$$

- For stability λ_1^n, λ_2^n must not grow with n
- since the product of eigenvalues is unity:

$$\det M = 1 \quad \Rightarrow \quad \lambda_1 \cdot \lambda_2 = 1$$

we can write in general

$$\lambda_1 = e^{i\mu}, \, \lambda_2 = e^{-i\mu}$$

• For stability μ should be real! $\frac{\operatorname{Tr} M = \lambda_1 + \lambda_2 = 2 \cos \mu}{-1 \le \frac{1}{2} \operatorname{Tr} M \le 1}$

Summary Matrix Treatment

- equation of motion is piecewise solved for constant K(s)
- coordinates x, x' are transported by multiplication with a 2x2 matrix
- matrixes can be concatenated
- defocusing and focusing quadrupoles are combined in overall focusing doublets
- det **M** = 1
- Courant-Snyder Parametrization of M
- linear motion in a ring is stable if |Tr M|<2

Next: Analytical Solution

- Hills equation
- Beta function
- phase space ellipse
- include momentum offset
- tune Q_x , Q_y

Hill equation

 First used by an astronomer G. Hill in his studies of the motion of the moon, a motion under the influence of periodically changing forces

$$x^{\prime\prime} + K(s) \cdot x = 0$$

$$K(s) = K(s + C)$$

Periodic over one full revolution C = 29 days

Hill equation

 First used by an astronomer G. Hill in his studies of the motion of the moon, a motion under the influence of periodically changing forces

Solution is of the type:

$$u(s) = A\sqrt{\beta(s)} \cos \left[\phi(s)\right]$$

Pseudo-harmonic oscillator

Hill: Solution for periodic K

$$x(s) = A\sqrt{\beta(s)}\cos(\varphi(s) - \varphi_0), \ \varphi(s) = \int_{t=s_0}^s \frac{dt}{\beta(t)}$$

- → the **beta function is a scaling factor** for the amplitude of orbit oscillations and their **local wavelength**
- A, φ_0 are constants of motion

Comparison to Classical Harmonic Oscillator

$$\ddot{u} + \omega^2 u = 0$$

$$u(t) = A \cos \omega t, \ \omega = \sqrt{\frac{k}{m}}$$

phase grows linear with time:

$$\sqrt{\frac{k}{m}}t$$

conserved (energy):

$$\frac{k}{2}u^2 + \frac{m}{2}\dot{u}^2 = \frac{k}{2}A^2$$

m

Hill Equation (pseudo harmonic equation)

$$\begin{aligned} x(s) &= \sqrt{2J\beta}\cos(\varphi) \\ x'(s) &= -\sqrt{\frac{2J}{\beta}}\left(\alpha\cos(\varphi) + \sin(\varphi)\right) \end{aligned}$$

amplitude varies:

$$x(s) \propto \sqrt{\beta(s)}$$

phase increases monotonically but growth rate varies as $1/\beta$:

$$d\varphi = \frac{ds}{\beta(s)}$$

conserved (action):

$$\gamma x^2 + 2\alpha x x' + \beta x'^2 = 2J = \text{const}$$

Conserved action : invariant on motion

- area =
$$2\pi J = \pi (\gamma x^2 + 2\alpha x x' + \beta x'^2)$$

phase space area is preserved

tune = number of
oscillations per turn:

$$Q_x = \frac{1}{2\pi} \oint \frac{ds}{\beta_x(s)}$$

Particle motion in phase space

CHANGE OF PARTICLE DISTRIBUTION IN PHASE SPACE

The initial coordinates of a particle ensemble in the transverse phase plane are contained in the ellipse:

Focusing Quadrupole

De-Focusing Quadrupole

Computing the transport matrix from Twiss Parameters

transport matrix $s=s_0...s_1$ (arbitrary section):

$$\begin{pmatrix} C & S \\ C' & S' \end{pmatrix} = \begin{pmatrix} \sqrt{\frac{\beta}{\beta_0}} (\cos \Delta \varphi + \alpha_0 \sin \Delta \varphi) & \sqrt{\beta \beta_0} \sin \Delta \varphi) \\ -\frac{1}{\sqrt{\beta \beta_0}} ((\alpha - \alpha_0) \cos \Delta \varphi + (1 + \alpha \alpha_0) \sin \Delta \varphi) & \sqrt{\frac{\beta_0}{\beta}} (\cos \Delta \varphi - \alpha \sin \Delta \varphi) \end{pmatrix}$$

 $\begin{array}{ll} \beta_0, \, \alpha_0 & \mbox{ at } s_0 \\ \beta, \, \alpha & \mbox{ at } s_1 \\ \Delta \phi & \mbox{ = phase advance between } s_0, \, s_1 \end{array}$

The one turn matrix $M_{ m rev}$

transport matrix for one revolution, "One Turn Matrix"

- same location: $\beta = \beta_0$
- $\Delta \phi = 2\pi Q$ phase advance for complete turn, Q = "Tune" of accelerator

$$\boldsymbol{M}_{\rm rev} = \begin{pmatrix} \cos 2\pi Q + \alpha \sin 2\pi Q & \beta \sin 2\pi Q \\ -\frac{1+\alpha^2}{\beta} \sin 2\pi Q & \cos 2\pi Q - \alpha \sin 2\pi Q \end{pmatrix} \qquad \overset{\boldsymbol{x'}}{\overbrace{\qquad}} \boldsymbol{x'}$$

• special case: choose symmetry point $\alpha = 0$

$$\boldsymbol{M}_{\rm rev} = \begin{pmatrix} \cos 2\pi Q & \beta \sin 2\pi Q \\ -\frac{1}{\beta} \sin 2\pi Q & \cos 2\pi Q \end{pmatrix}$$

Beta function

- The **betatron function (**β**)** that defines the beam envelope,
 - Beam size / envelope is proportional to $\sqrt{\beta}$

The Betatron Frequency Q (tune of accelerator)

$$Q_x = \frac{1}{2\pi} \oint \frac{ds}{\beta_x(s)}$$

$$f$$
around ring

Tune = Number of Betatron Oscillations per Turn the choice of tune is important to avoid resonant behaviour Both integer and fractional part are important for machine design

Tunes and Orbit in LHC

Example Orbit Oscillations:

LHC Tunes:

 $Q_x = 64.31$ $Q_y = 59.32$

relevant for stability: non-integer part

Example Measured Beam Spectrum:

LHC Revolution Frequency: 11.3kHz peak position: 3.5kHz = 0.31×11.3kHz

Appendix: Magnetic Rigidity (proton)

Lorentz force
$$\vec{F}_B = e \cdot \vec{v} \times \vec{B}$$

B, *v* perpendicular $F_B = evB$
centrifugal force $F_c = -m \frac{v^2}{\rho}$
 $F_B + F_c = 0 \longrightarrow evB = m \frac{v^2}{\rho}$
 $B\rho = \frac{mv}{e}$

Magnetic rigidity

$$B\rho = \frac{p}{e}$$

- *B* = magnetic field
- ρ = local bending radius
- p = momentum
- e = elementary charge

Appendix: Magnetic Rigidity in Practical Units

$$B\rho = \frac{p}{e} = \frac{mv}{e} = \beta\gamma \frac{m_0 c}{e}$$
$$= \beta\gamma \frac{m_0 c^2}{ce}$$

$$=\beta \frac{E_{\rm tot}}{ce}$$

 \downarrow

$$=\beta \ \frac{10^9}{c} E_{\rm tot} [{\rm GeV}]$$

 $B\rho[\text{Tm}] \approx 3.3356 \cdot E_k[\text{GeV/c}]$ $B\rho[\text{Tm}] = 3.3356 \cdot p[\text{GeV/c}]$

- *B* = magnetic field
- ρ = local bending radius
- *p* = momentum
- *e* = elementary charge
- E_k = kinetic energy

total energy:

$$E_{\rm tot} = E_k + m_0 c^2$$

approximations: $\beta \approx 1, cp \approx E_k$ for $E_k \gg m_0 c^2$

see also Wiedemann, p.101, eq.5.6

Appendix, Derivation: Equation of Motion I

 $\frac{d\vec{p}}{dt} = \gamma m_0 \ddot{\vec{R}} = \vec{F}$ starting with general equation of motion: $\vec{R} = r \boldsymbol{e}_x + y \boldsymbol{e}_y, \ r \equiv \rho + x$ $\vec{R} = \dot{r} \boldsymbol{e}_x + r \dot{\boldsymbol{e}}_x + \dot{y} \boldsymbol{e}_y$ $\boldsymbol{e}_x, \boldsymbol{e}_y, \boldsymbol{e}_s$ unit vectors $\vec{R} = \dot{r} \boldsymbol{e}_x + r \dot{\theta} \boldsymbol{e}_s + \dot{y} \boldsymbol{e}_y$ $|e_y|$ $\ddot{\vec{R}} = \ddot{r} \boldsymbol{e}_x + (2\dot{r}\dot{\theta} + r\ddot{\theta})\boldsymbol{e}_s + r\dot{\theta}\dot{\boldsymbol{e}}_s + \ddot{y}\boldsymbol{e}_y$ $\ddot{\vec{R}} = (\ddot{r} - r\dot{\theta}^2)\boldsymbol{e}_x + (2\dot{r}\dot{\theta} + r\ddot{\theta})\boldsymbol{e}_s + \ddot{y}\boldsymbol{e}_y$ reference orbit

used here: $\dot{\boldsymbol{e}}_x=\dot{ heta}\boldsymbol{e}_s,~\dot{\boldsymbol{e}}_s=-\dot{ heta}\boldsymbol{e}_x$

comment: the main purpose here is to correctly treat the effect of the curved coordinate system, i.e. the moving unit vectors e_x , e_s

Derivation: Equation of Motion II

right side of equation, the force:

$$\vec{F} = e\vec{v} \times \vec{B}$$

$$\vec{v} \times \vec{B} = \begin{vmatrix} e_x & e_y & e_s \\ v_x & v_y & v_s \\ B_x & B_y & 0 \end{vmatrix}$$

$$\vec{s} = -v_s B_y e_x + v_s B_x e_y + (v_x B_y - v_y B_x) e_s$$

$$result: two equations hor/vert from x, y components:$$

$$use:$$

$$B_y = B_0 + gx$$

$$B_x = gy$$

$$g \equiv \frac{\partial B_y}{\partial x} = \frac{\partial B_x}{\partial y}$$

 $\gamma m_0(\ddot{r} - r\dot{\theta}^2) = -ev_s(B_0 + gx)$ $\gamma m_0 \ddot{y} = ev_s gy$ in literature g has varying sign conventions Wiedemann, Table 6.2: g= +dB_y/dx Schmüser/Hillert: g= -dB_y/dx

Derivation: Equation of Motion III

introduce path length *s* as independent variable:

$$\gamma m_0 (\ddot{r} - r\dot{\theta}^2) = -ev_s (B_0 + gx)$$

$$\gamma m_0 \ddot{y} = ev_s gy$$

$$x'' = \frac{1}{r} - \frac{e}{\gamma m_0 v} (B_0 + gx)$$

$$y'' = \frac{e}{\gamma m_0 v} gy$$

use: $v_s = r\dot{\theta} \approx v$ $\ddot{r} = \ddot{x}$ $\ddot{x} = v^2 x'', \ x'' \equiv \frac{\partial^2 x}{\partial s^2}$ $\ddot{y} = v^2 y'', \ y'' \equiv \frac{\partial^2 y}{\partial s^2}$

Derivation: Equation of Motion IV

$$x'' = \frac{1}{r} - \frac{e}{\gamma m_0 v} (B_0 + gx)$$

$$y'' = \frac{e}{\gamma m_0 v} gy$$

$$x'' = \frac{1}{\rho} \left(1 - \frac{x}{\rho} \right) - kx - \frac{1}{\rho \left(1 + \frac{\Delta p}{p_0} \right)}$$

$$= -\left(\frac{1}{\rho^2} + k \right) x + \frac{1}{\rho} \frac{\Delta p}{p_0}$$

$$y'' = ky$$

_

use:

$$\frac{1}{r} = \frac{1}{\rho + x} \approx \frac{1}{\rho} \left(1 - \frac{x}{\rho} \right)$$
$$\frac{eB_0}{\gamma m_0 v} = \frac{eB_0}{p} = \frac{1}{\rho}$$
$$p = p_0 \left(1 + \frac{\Delta p}{p_0} \right)$$
$$k = \frac{eg}{\gamma m_0 v}$$