

Silicon sensors for beam monitoring: first characterization with Ultra-High Dose Rate (UHDR) electron beams

Istituto Nazionale di Fisica Nucleare

Elisabetta Medina, elisabetta.medina@unito.it

FLASH radiotherapy

FLASH RT delivers radiation (electrons, photons, particles) at ultra-high dose rate (UHDR, average dose rate > 40 Gy/s) in < 200 ms.

Beam Characteristics	CONV	FLASH
Dose Per Pulse Dp	~0.4 mGy	~1 Gy
Dose Rate: Single Pulse Ď _p	~100 Gy/s	~10 ⁵ Gy/s
Mean Dose Rate: Single Fraction Ď _m	~0.1 Gy/s	~ 100 Gy/s
Total Treatment Time T	~days/minutes	< 500 ms

FLASH EFFECT:

Does not induce classical radiation induced toxicity in normal tissues. Retains antitumor efficacy compared to standard RT

FLASH radiotherapy

3

Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice

Vincent Favaudon ¹, Laura Caplier ², Virginie Monceau ³, Frédéric Pouzoulet ⁴, Mano Sayarath ⁴, Charles Fouillade ⁴, Marie-France Poupon ⁴, Isabel Brito ⁵, Philippe Hupé ⁶, Jean Bourhis ⁷, Janet Hall ⁴, Jean-Jacques Fontaine ², Marie-Catherine Vozenin ⁸

Elisabetta Medina

INSIGHTS worksho

- A crucial role: dose delivery time structure (parameters need to be kept under control)
- The most of the pre-clinical studies using electron beams (by LINACs with E<20 MeV)

Beam monitor systems

INSIGHTS

- Continuous check of beam parameters
- IC CONV: Gas-filled IC → IC UHDR : high rate of recombination, too slow
- Need of new beam monitoring device to stop delivery of a FLASH dose quickly enough

High temporal resolution High spatial resolution

Beam transparency

Large response dynamic range

Large sensitive area

Radiation hardness

Conventional IC used in LINACs

DOSIMETERS

PTW 60019 microDiamond

Ultra-Thin Ionization chamber (UTIC)

BEAM MONITOR

Beam Current Transformers (BCT)

Beam monitor systems

- Continuous check of beam parameters
- IC CONV: Gas-filled IC → IC UHDR : high rate of recombination, too slow
- Need of new beam monitoring device to stop delivery of a FLASH dose quickly enough

High temporal resolution High spatial resolution Beam transparency

Large response dynamic range

Large sensitive area

Radiation hardness

Beam monitor systems

- Continuous check of beam parameters
- IC CONV: Gas-filled IC → IC UHDR : high rate of recombination, too slow
- Need of new beam monitoring device to stop delivery of a FLASH dose quickly enough

High temporal resolutionHigh spatial resolutionBeam transparencyLarge response dynamic range

- Large sensitive area
- Radiation hardness

Solid State Devices for Beam Monitoring

Sezione di Catania

Sezione di Catania

Solid State Devices for Beam Monitoring

Sezione di Catania

Sezione di Catania

Turin Medical Physics group expertise

- Ultra-Fast Silicon Detector (UFSD) based on LGAD technology within INFN MOveIT project (FBK production)
- p⁺gain layer under the n⁺⁺ cathode
- Two prototypes: 1) Proton counter for clinical proton beam
 2) Device to measure beam energy using TOF technique

Turin Medical Physics group expertise

- Ultra-Fast Silicon Detector (UFSD) based on LGAD technology within INFN MOveIT project (FBK production)
- p⁺gain layer under the n⁺⁺ cathode
- Two prototypes: 1) Proton counter for clinical proton beam
 2) Device to measure beam energy using TOF technique

Thin silicon detectors

Silicon devices in Turin: used so far for *single particle counting* → With **TERA08** signal can be integrated

Mounted on HV distribution board

- 11 strips sensor (pin) [MoVeIT]
- Strip area 2.2mm², active thickness $45 \,\mu m$, total thickness $615 \,\mu m$)

- For **preliminary tests** on conventional e⁻ beams
 - INSIGHTS workshop, Pisa, 18-20 October 2023

- 3 pad sensors (pin) [eXFlu]
- Areas $2/1/0.25 mm^2$, active thickness **45/30 μm**, total thickness 615 μm)
- (Thanks to **Valentina Sola**)

To compare **different areas and** thickness on UHDR beams

Elisabetta Medina

Readout system: TERA08

- Readout with **TERA08** (64 equal CHNs)
- In each CHN current-to-frequency converter (each digital pulse = fixed input charge quantum)
- Converter based on **recycling integrator architecture**

DAQ Period (µs)	Q _c (fC)	Max conversion freq per chn	Max conversion (total)	Max current (for 64 CHNs)
1e4 (0.01 s)	200 fC	20 MHz	1280 MHz	± 256 μA

Chip structure

First tests with conventional electrons beams

- Chip1

230

235

240

Chip2

Test 67

220

Time [0.05s]

225

First tests with conventional electrons beams

Chip1

Chip2

240

- Conventional beams at LINAC Elekta SL18
- 2 strips of 45μm sensor connected to TERA08

FWHM compatible with field size

4

First characterization with FLASH beams

- ElectronFlash accelerator (Centro Pisano Multidisciplinare sulla Ricerca e Implementazione Clinica della Flash Radiotherpy)
- Sordina IORT Technologies S.p.A (S.I.T)
- 7 MeV and 9 MeV Beam current: 1-100 mA Pulse duration: 0.5-4 μs Pulse frequency: 1-249 Hz
- Indipendent variation of parameters (possible study of the volume effect in FLASH/non-FLASH mode conditions)
- Uniformity of dose profile: PMMA plastic applicator (different max dose-rate)

First characterization with FLASH beams

- 9 MeV, 3 cm diameter PMMA applicator (up to ~ 10 Gy/pulse), 4µs pulse duration
- 13 mm solid water slab (reduced air gap between slab-sensor)

13mm solid water slab

FlashDiamond and silicon sensor in same conditions

Experimental setup

TERA08 measurements

- 45 μm thickness, 2mm² area
- RC circuit to extend signal duration and not exceed 256µA for 64 chns
- RC connected to TERA08 and NI module
- Bias voltage 200 V
- Increasing dose-per-pulse (DPP) from 0 to ~10Gy/pulse

Experimental setup

TERA08 measurements

- 45 μm thickness, 2mm² area
- RC circuit to extend signal duration and not exceed 256µA for 64 chns
- RC connected to TERA08 and NI module
- Bias voltage 200 V
- Increasing dose-per-pulse (DPP) from 0 to ~10Gy/pulse

Experimental setup

TERA08 measurements

- 45 μm thickness, 2mm² area
- RC circuit to extend signal duration and **not** exceed 256µA for 64 chns
- RC connected to TERA08 and NI module
- Bias voltage 200 V
- Increasing dose-per-pulse (DPP) from 0 to ~10Gy/pulse

TERA08

National Instruments

PXIe-1071 PXI Chassis

RC

45μm / 30μm thickness, 2mm², 1mm², 0.25 mm² area 3 pads connect to 3 oscilloscope channels Bias voltage: 10V, 50V, 100V, 150V, 200V

- Increasing DPP (from 0 to ~10Gy/pulse)
- Compare different areas/thickness charge generation

Oscilloscope measurements

DSOS254A

45µm Elisabetta Medina

TERA08 and oscilloscope comparison

- 45 μ m thickness, 2mm² area
- 200V bias voltage
- Good linearity (R²>99%) up to doserates >10Gy/pulse (1Gy/pulse is already FLASH regime)
- **Good correlation** of charge measured with TERA08 and oscilloscope

Elisabetta Medina

Electric Field distortion

- At bias < 150 V (where the sensor is completely depleted) a shortening of the signal was observed: **electric field distortion** at high dose rates?
- TCAD Sentaurus simulations ongoing

Electric Field distortion

- At bias < 150 V (where the sensor is completely depleted) a shortening of the signal was observed: **electric field distortion** at high dose rates?
- TCAD Sentaurus simulations ongoing

Area and thickness

- Comparison of Q produced in different thicknesses and areas with the same electric field (~ 4.44 V/μm)
- Varies proportionally to the pad area and to the sensor thickness.
- **Ratio** between charges collected in different pads **independent of the DPP**: volume-dependent effects of recombination of charge carriers are playing a negligible effect.

Elisabetta Medina

Next steps: TERA09

- Frontend chip based on 64 charge recycling CHNs
- Extended current range with respect to TERA08 (preliminary design and test phase): 12 μA / chn with 200 fC.
- Larger sensor (Area <u>2.7×2.7 cm²</u> and 146 strips) to cover all beam spot area (~ cm²)
- Strip based / pad based system: **Online control** of beam shape and dose after **one single shot**
- New production of silicon sensors

Large sensor

[Designed to cover proton beam spot]

Current range	100 pA-100 µA	
Max conv freq	62.5 MHz	

Elisabetta Medina

Solid State Devices for Beam Monitoring

Diamond detector

- CVD Polycrystalline diamond
- Metallised the diamond on both sides with aluminium layers
- Both positive and negative voltages.
- LINAC Elekta SL18
- FLASH MODE and CONV MODE
- In-house developed sample
- Metallization vs Implantation

- > Different geometries of silicon sensor (pad/strip) were tested
- **Good linearity (**R² > 0.99) up to more than 10 Gy/pulse
- Good matching of integrated charge measured by **TERA08 and oscilloscope**
- Readout system capable of supporting the high instantaneous currents generated under FLASH conditions (you can go further!)
- Further studies **and simulations** are ongoing

Thanks for the attention!

Backup slides

TERA08

- Application Specific Integrated Circuit designed by our group and used in several laboratories: TERA
- 64 equal CHNs
- In each CHN **Current-to-frequency converter** (each digital pulse = fixed input charge quantum)
- Max conv frequency=20MHz
- Converter accepts both polarities + 32-bit counter (up/down counting capability)
- Converter based on **Recycling integrator** architecture

CHIP1

TERA08

- I_{in} integrated over 600fF capacitor **C**_{int} (via Operational Transcoddutance Amplifier **OTA**)
- V_{out} compared to +/-thr (by 2 synchronous comparators CMP₁ CMP₂)
- Pulse Generator **PG**: pulse to increment/decrement counte **CNT**
- In parallel PG: pulse to **Charge Subtraction Circuit** (subtract +/- charge quantum to C_{int})

DAQ Period (μs)	Q _c (fC)	Max conversion freq per chn	Max conversion (total)	Max current (for 64 CHNs)
1e4 (0.01 s)	200 fC	20 MHz	1280 MHz	± 256 μA

LINAC upgrade

Silicon sensor (2) as a beam pulse radiation detector

- 1. Signal to a **in-house built electrical circuit**: transimpedance amplifier converts photocurrent into small V with subsequent amplification
- 2. Gain chosen to have suitable input to a Schmitt-Trigger
- 3. Signal of ~5V as input to ARDUINO to count pulses
- When amount of pulses reached: logical signal to Optocoupler circuit → Strigger to Thyratron


```
In-house built electrical circuit
```


Diamond sensor: first test

33