

Optimisation and setup for quantitative in vitro/vivo experiments with low energy UHDP electrons in FLASH RT

¹Medical Physics School, University of Pisa, Pisa, Italy ²Centro Pisano multidisciplinare ricerca e implementazione clinica Flash Radiotherapy (CPFR@CISUP), Pisa, Italy ³SIT Sordina IORT Technologies, Aprilia (LT), Italy

Luigi Masturzo^{1,2,3}

- FLASH effect what we know
- Clinical transition of FLASH what is needed
- UHDP dosimetric challenges and possible solutions
- In vitro experiments
- In vivo experiments

Presentation outline

1/15

Experimental evidences

Dose	> 5 - 10 Gy	
Dose Rate	> 100 Gy/s	
Dose-per-pulse	> 1 Gy	Konradsson et al. (202
Instantaneous Dose Rate	> 10 ⁶ Gy/s	
Irradiation time	< 100 - 200 ms	Feline Vozenin et al. (2019a)

Most of the experiments have been conducted using low energy electron beams

FLASH effect - what we know

Clinical Transition of FLASH RT

Study of different beam parameters

L. Masturzo

Clinical transition of FLASH radiotherapy

Comprehension of the radiobiological mechanisms

More complex situation (dosimetry + setup) respect to in vitro experiments

Post-Transition Metal

Dosimetric challenges...

The challenge of ionisation chamber dosimetry in ultra-short pulsed high dose-rate Very High **Energy Electron beams**

M. McManus^{1,2}, F. Romano^{5,1}, N. D. Lee¹, W. Farabolini^{4,6}, A. Gilardi⁴, G. Royle², H. Palmans^{3,1} & A. Subiel¹⊠

Alanine

Gafchromic films

mm

L. Masturzo

Passive dosimeters

ELSEVIER

Ionization chambers

SCIENTIFIC REPORTS

natureresearch

Check for updates

Available online at www.sciencedirect.com

ScienceDirect

Radiation Measurements 41 (2007) S124-S133

www.elsevier.com/locate/radmea

Plastic scintillation dosimetry and its application to radiotherapy

A.S. Beddar³

Department of Radiation Physics, Division of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA

Diodes

Dosimetric challenges

... and possible solutions

Dosimetric solutions

L. Masturzo

In vitro experiments

<u>Aim</u>: to explore and quantify the biological effects of different beam parameters one by one

Dosimetric (standardized) setup

- Irradiations at the build-up region (13 mm solid water, EF in vertical position)
- Flat dose distribution + corrective factors from GAF and simulations
- Dosimetric check (before, simultaneous, after irradiation) using FD and MU
- First FLASH, later CONV (same dose requested)

In vitro experiments

	FLA	SH	CONV		
Nominal dose [Gy]	Delivered Dose [Gy]	DR [Gy/s]	Delivered Dose [Gy]	DR [Gy/min]	Difference
3	3.09	241	3.09	5	0.09%
6	6.15	241	6.14	5	0.11%
9	9.31	241	9.31	5	0.08%
12	12.32	241	12.30	5	0.16%

L. Masturzo

In vitro experiments

7/15

In vivo experiments

Additional variables respect to the in vitro counterpart

- Dose distribution no longer flat (target with different densities)
- Not interested in punctual dose
- Need of an accurate and reproducible positioning system (+ imaging system)
- Need of a Treatment Planning System (planning + dose quantification)

essential for preclinical translation

CLINICAL CANCER RESEARCH | TRANSLATIONAL CANCER MECHANISMS AND THERAPY

Dose- and Volume-Limiting Late Toxicity of FLASH Radiotherapy in Cats with Squamous Cell Carcinoma of the Nasal Planum and in Mini Pigs

Carla Rohrer Bley¹, Friederike Wolf¹, Patrik Gonçalves Jorge^{2,3,4}, Veljko Grilj^{2,3,4}, Ioannis Petridis^{2,3}, Benoit Petit^{2,3}, Till T. Böhlen⁴, Raphael Moeckli⁴, Charles Limoli⁵, Jean Bourhis², Valeria Meier¹, and Marie-Catherine Vozenin^{2,3}

In conclusion, our study is the first to shed light on certain caveats in the path toward clinical translation of FLASH-radiotherapy and shows that implementation of single-high-dose and large field irradiations will present challenges for minimizing long-term toxicities even with FLASH dose rates. We believe that clinical trials with domestic animal patients (cats and dogs) are safe and quick way to investigate FLASH-radiotherapy benefit and avoid possible failure in human clinical trial. At the technological level, implementation of state-ofthe art ballistics, imaging and treatment plan should be coupled with FLASH capabilities and systematic characterization of the beam parameters will be required to unravel the full potential of FLASH-radiotherapy, which remains a significant hurdle with existing technology.

In vivo experiments - first experiments @ CPFR

- Patient: mouse (3x7x2 cm³)
- Handmade polystyrene housing
- GAF positioned above and under the mouse for dose quantification
- 100 mm diameter applicator + Tecapeek shaper for emifields
- <u>Results</u>: it was not possible to determine the delivered dose to the targeted organs and perform a proper positioning of the mouse

In vivo experiments - ongoing experiments @ CPFR

- Aim: optimize spatial distribution of the beam
- Applicator of 40 and 50 mm diameter (suits well for mouse irradiations)
- Solution: beam shaper
- 2+2 coupled leafs
- Made of W (3 mm thick)

$$Z = 74$$

W
 $\rho = 19.3 \text{ g/cm}^3$

L. Masturzo

In vivo experiments - ongoing experiments @ CPFR

Positioning system

- First version: very simple and easy to fabricate (all 3D printed)
- Designed for EF irradiation position (oblique)
- Modular (6 pieces)
- 4 degrees of freedom
- Low Z materials (minimise backscatter)
- GAF placements for dose verification

200
100
300
300
200
200
800
800
800
200
300
200
200

In vivo experiments - ongoing experiments @ CPFR

Positioning system

- First version: very simple and easy to fabricate (all 3D printed)
- Designed for EF irradiation position (oblique)
- Modular (6 pieces)
- 4 degrees of freedom
- Low Z materials (minimise backscatter)
- GAF placements for dose verification

200
200
200
200
300
200
200
300
200
200
300
200

In vivo experiments - ongoing experiments @ CPFR

Positioning system

- First version: very simple and easy to fabricate (all 3D printed)
- Designed for EF irradiation position (oblique)
- Modular (6 pieces)
- 4 degrees of freedom
- Low Z materials (minimise backscatter)
- GAF placements for dose verification

L. Masturzo

In vivo experiments - ongoing experiments @ CPFR

Movements used in simulation

PISA 18-20 Ottobre 2023

Transparent slab for positioning + laser

12/15

In vivo experiments - ongoing experiments @ CPFR

L. Masturzo

In vivo experiments - ongoing experiments @ CPFR

L. Masturzo

DVH - Shaper

Conclusions

In vitro experiments

quantitative evaluation on the optimization of the beam parameters

In vivo experiments

quantitative radiobiological evaluations taking into account metabolic aspects

PAST / PRESENT

LIAC FLASH

First clinical application of FLASH RT

FUTURE

Very High Energy Electrons **VHEE**

Implementation of FLASH RT in the radiotherapy routine

DREAM

Conclusions

